vault backup: 2025-04-14 19:38:20
This commit is contained in:
36
Languages & Machines/Regular languages.md
Normal file
36
Languages & Machines/Regular languages.md
Normal file
@ -0,0 +1,36 @@
|
||||
---
|
||||
type: math
|
||||
---
|
||||
## Induction
|
||||
Similar (if not the same) to:
|
||||
- [Mathematical Proofs (Induction)](Mathematical%20Proofs%20(Induction).md)
|
||||
- [Structural Proofs](Proofs.md)
|
||||
|
||||
|
||||
- Base case $0\in \mathbb{N}$
|
||||
- Inductive step - if $n\in \mathbb{N} \implies n+1\in \mathbb{N}$
|
||||
- We allow a finite number of steps
|
||||
|
||||
|
||||
I.e.
|
||||
Given $f (n) = n(n + 1)$ for all $n\in N$, then $f (n)$ is even.
|
||||
|
||||
**Base case:** $f(0) = 0\times 1 = 0$, which is even
|
||||
**I.S.:**
|
||||
$$
|
||||
f(n+1) = (n+1)(n+2)= n(n+1)+2(n+1) = f(n) + 2(n+1) \blacksquare
|
||||
$$
|
||||
|
||||
## Strings and Languages
|
||||
Literally the same as [Mathematical Data Structures](Mathematical%20Data%20Structures.md), but on strings
|
||||
|
||||
How to define the reversal of a string, inductively?
|
||||
|
||||
|
||||
Let $w$ be a finite string. We define $w^R$ by induction on $|w|$:
|
||||
|
||||
**B.C.:**
|
||||
$|w| = 0$, then, trivially, $w = \epsilon \therefore w^R = \epsilon$
|
||||
|
||||
**I.S.:**
|
||||
$|w| = n \geq 1$, so $w = u a$ with $|u| = n-1$,
|
Reference in New Issue
Block a user