vault backup: 2025-02-04 10:17:22

This commit is contained in:
Boyan 2025-02-04 10:17:22 +01:00
commit a33da99c30
13 changed files with 26153 additions and 5385 deletions

View File

@ -14,5 +14,6 @@
"obsidian-plugin-toc", "obsidian-plugin-toc",
"emoji-shortcodes", "emoji-shortcodes",
"advanced-canvas", "advanced-canvas",
"obsidian-tracker" "obsidian-tracker",
"better-export-pdf"
] ]

View File

@ -0,0 +1,29 @@
{
"showTitle": true,
"maxLevel": "6",
"displayHeader": true,
"displayFooter": true,
"headerTemplate": "<div style=\"width: 100vw;font-size:10px;text-align:center;\"><span class=\"title\"></span></div>",
"footerTemplate": "<div style=\"width: 100vw;font-size:10px;text-align:center;\"><span class=\"pageNumber\"></span> / <span class=\"totalPages\"></span></div>",
"printBackground": false,
"generateTaggedPDF": false,
"displayMetadata": false,
"debug": false,
"isTimestamp": false,
"enabledCss": false,
"prevConfig": {
"pageSize": "A4",
"marginType": "1",
"showTitle": true,
"open": true,
"scale": 100,
"landscape": false,
"marginTop": "10",
"marginBottom": "10",
"marginLeft": "10",
"marginRight": "10",
"displayHeader": true,
"displayFooter": true,
"cssSnippet": "0"
}
}

21276
.obsidian/plugins/better-export-pdf/main.js vendored Normal file

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,11 @@
{
"id": "better-export-pdf",
"name": "Better Export PDF",
"version": "1.10.2",
"minAppVersion": "0.15.0",
"description": "Export your notes to PDF, support export preview, add bookmarks outline and header/footer.",
"author": "l1xnan",
"authorUrl": "https://github.com/l1xnan",
"fundingUrl": "https://www.buymeacoffee.com/l1xnan",
"isDesktopOnly": true
}

View File

@ -0,0 +1,61 @@
#better-export-pdf {
display: flex;
flex-direction: row;
height: 75vh;
}
#better-export-pdf .pdf-preview {
flex: auto;
position: relative;
display: flex;
flex-direction: column;
overflow-x: hidden;
overflow-y: scroll;
align-content: flex-start;
}
#better-export-pdf .pdf-preview .webview-wrapper {
position: relative;
height: 100%;
width: 100%;
}
#better-export-pdf .pdf-preview .print-size {
position: absolute;
right: 8px;
top: 8px;
z-index: 99;
font-size: 0.6rem;
white-space: pre-wrap;
text-align: right;
visibility: hidden;
}
#better-export-pdf .pdf-preview > div {
flex: 1;
height: 100%;
width: 100%;
}
#better-export-pdf .pdf-preview .filename {
font-size: 0.75rem;
color: var(--color-base-60);
}
#better-export-pdf .pdf-preview .filename:not(:first-child) {
padding-top: calc(var(--p-spacing));
}
#better-export-pdf webview {
flex: 1;
height: 100%;
width: 100%;
}
#better-export-pdf .setting-wrapper {
width: 320px;
margin-left: 16px;
}
#better-export-pdf .setting-wrapper .setting-item[hidden] {
display: none;
}

View File

@ -0,0 +1,60 @@
{
"items": [
{
"name": "Markdown"
},
{
"name": "Markdown (Hugo)"
},
{
"name": "Html"
},
{
"name": "TextBundle"
},
{
"name": "Typst"
},
{
"name": "PDF"
},
{
"name": "Word (.docx)"
},
{
"name": "OpenOffice"
},
{
"name": "RTF"
},
{
"name": "Epub"
},
{
"name": "Latex"
},
{
"name": "Media Wiki"
},
{
"name": "reStructuredText"
},
{
"name": "Textile"
},
{
"name": "OPML"
},
{
"name": "Bibliography"
}
],
"defaultExportDirectoryMode": "Auto",
"openExportedFile": true,
"env": {},
"showExportProgressBar": true,
"lastExportDirectory": {
"linux": "/home/boyan/Documents"
},
"lastExportType": "PDF"
}

View File

@ -34,9 +34,23 @@
"icon": "lucide-file", "icon": "lucide-file",
"title": "Introductory Lecture" "title": "Introductory Lecture"
} }
},
{
"id": "1ac4561fed3e4c16",
"type": "leaf",
"state": {
"type": "markdown",
"state": {
"file": "conflict-files-obsidian-git.md",
"mode": "source",
"source": false
},
"icon": "lucide-file",
"title": "conflict-files-obsidian-git"
}
} }
], ],
"currentTab": 1 "currentTab": 2
} }
], ],
"direction": "vertical" "direction": "vertical"
@ -213,11 +227,15 @@
"omnisearch:Omnisearch": false "omnisearch:Omnisearch": false
} }
}, },
"active": "56bef0584922cba9", "active": "1ac4561fed3e4c16",
"lastOpenFiles": [ "lastOpenFiles": [
"Software Engineering/Introductory Lecture.md",
"conflict-files-obsidian-git.md",
"Untitled.md",
"Statistics and Probability/Mock exam run 1.md",
"Functional Programming/Proofs.md",
"Operating Systems", "Operating Systems",
"Statistics and Probability/Support Lecture.md", "Statistics and Probability/Support Lecture.md",
"Software Engineering/Introductory Lecture.md",
"Software Engineering", "Software Engineering",
"Pasted image 20250113151159.png", "Pasted image 20250113151159.png",
"Extracurricular/Misc/Ideas.md", "Extracurricular/Misc/Ideas.md",
@ -234,7 +252,6 @@
"Discrete Structures/Midterm", "Discrete Structures/Midterm",
"Extracurricular/satQuest/img/Pasted image 20241206134156.png", "Extracurricular/satQuest/img/Pasted image 20241206134156.png",
"Extracurricular/satQuest/Parts Proposal.md", "Extracurricular/satQuest/Parts Proposal.md",
"Untitled.md",
"Untitled.canvas", "Untitled.canvas",
"Discrete Structures/Mathematical Data Structures.md", "Discrete Structures/Mathematical Data Structures.md",
"Discrete Structures/Relations and Digraphs.md", "Discrete Structures/Relations and Digraphs.md",
@ -251,8 +268,6 @@
"Advanced Algorithms/Recurrence relations.md", "Advanced Algorithms/Recurrence relations.md",
"Advanced Algorithms/Graph Algorithms.md", "Advanced Algorithms/Graph Algorithms.md",
"Linear Algebra/Matrices.md", "Linear Algebra/Matrices.md",
"Advanced Programming/Intro.md",
"Advanced Programming/Annotation Repository.md",
"Advanced Algorithms/assets/pnp/Pasted image 20241203234013.png", "Advanced Algorithms/assets/pnp/Pasted image 20241203234013.png",
"Advanced Algorithms/assets/pnp/Pasted image 20241203234032.png", "Advanced Algorithms/assets/pnp/Pasted image 20241203234032.png",
"Advanced Algorithms/assets/graph/1_WR4AtjT_nhwSOtAW99Yd5g.gif", "Advanced Algorithms/assets/graph/1_WR4AtjT_nhwSOtAW99Yd5g.gif",
@ -261,7 +276,6 @@
"Advanced Algorithms/practicals", "Advanced Algorithms/practicals",
"Statistics and Probability/R", "Statistics and Probability/R",
"Discrete Structures/img", "Discrete Structures/img",
"Algorithmic Programming Contests",
"Web Engineering/canvae/server_client.canvas", "Web Engineering/canvae/server_client.canvas",
"Advanced Programming/projects/second/Refactoring.canvas", "Advanced Programming/projects/second/Refactoring.canvas",
"Advanced Programming/assets/assignment/assignment_organization.canvas", "Advanced Programming/assets/assignment/assignment_organization.canvas",

View File

@ -89,6 +89,8 @@ To prove $P$:
## Mathematical Induction ## Mathematical Induction
[^2] [^2]
Generalized in [Proofs (FP)](Proofs.md)
![induction](induction.png) ![induction](induction.png)

File diff suppressed because it is too large Load Diff

View File

@ -1,595 +0,0 @@
---
excalidraw-plugin: parsed
tags: [excalidraw]
---
==⚠ Switch to EXCALIDRAW VIEW in the MORE OPTIONS menu of this document. ⚠== You can decompress Drawing data with the command palette: 'Decompress current Excalidraw file'. For more info check in plugin settings under 'Saving'
# Excalidraw Data
## Text Elements
%%
## Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQAWbQBGGjoghH0EDihmbgBtcDBQMBKIEm4IAGY4XDgACSMADgAGAE5CZwAZAFYADWcAEQBhJOx8AEdUkshYRAqAM0CETyp+
UsxuZ3jWxu0ebrXIGE397u0Adm7zxqT9w4gKEnVuVr5CyEkEQmVpbm7W+7WZTBbjNe7MKCkNgAawQQzY+DYpAqAGIkgh0eipqVNLhsNDlFChBxiPDEciJJDrMwaoFstjIPNCPh8ABlWAgiSCDwMiAQqGwgDqT0k3De0z5kJhCHZME56G55XuRJ+HHCuTQSXubBq2DUx01zTB7wghOEcAAksQNag8gBde6LXCZK3cDhCFn3QgkrAVXDNXlEklq5g2
92ek1hZZi85JVrNbrxSrne6MFjsLhoO4mtOsTgAOU4Ym48QAbGWjcmtSbCMwBukoNG0PMCGF7pphCSAKLBTLZMMe/D3IRwYi4RvEbhJc6VboJ7qJxqNSrxe5EDjQt2DtdsfFN1At/Btk1wNjenL5d5gArTErG29gZpXh1Xm+3pL329P28v29v6bTocd7PkB/4lDwn7TM4SQga+V5gLOQFgM4pawX+8HxKu8HOK0aHTGBYBXEh0E8HhJQEaWlTEUk
8Rkde8GNOKt7Qd0dEEY0BzYUkrE/qBDEplxPHTL++EMQCglsfBrTVg+LGSQ+rzUUJJQieRUlMVBSQwbxcEKRpJRbPJt6KfB37CXxelITRRnTCZD5xjZJR2bePDnI5YDOdMlSVO50lIfEZkqRZxkybemG+aF0zhT+7yqRAcCBKGIjhJeX5AZBj7pVlV4Zbl2VpTl+XTHlhWlQV5XFUVd5VZlOWxeChD6B644IAAColzDJdwh7HhK+ChFA8L6PoagT
q1Z70mgYF+Ve0UqYUAC+azFKU5QSF22T+hw5yCgAsrgACqABi+idAAKgAaoQrS7a0Ri8rM4joIsCDLOQqwmhsaAsa0eycRKBqoM4S4XFcNzZhKjzEM8aBlvcnzfL8aCNFhEpAvKkGSgKcIIkiqKYhiSDtniBJBqSuMUugVIcDSuB0lAvJMiysrynyCJKpGUpCiKYrglzMock9bM8sqwiquqU7arq+pTka9xmiOVo2vajrkC6k5oOGQ41j6X3oLgl
SBp2xAhgOEYSlGGuoFprStPEjSlnG/2lLmGZipFDBMHmHCFhwxaw653QcQFzuQLW9bBBO3Wtgg7bGz2GRZBemvbiaI5jlHmoznOC4Lq5zSlmu3qbin5ulIie5Wz1scnhNye2rpFXFe5kUGTwpE6eh9nETwjQt8RK799hAVD7Jc6j8xQcT1BpZuZ3okPvpyGlrh89qQ+qPMecHfmY3UXEectFr/RG8H6hx8EaHBnnOfu9d++jTEWW7k8JvUHee5lR
L9BfcX/BlSFy4tpO+C8wpUXgjvIKe8ShwwYu5WBD5f7CXqieDqyVlZlUqpg6q2DapNzwVg/BJUiE1WIYQ8hwEQECEas1Rs7V1RdWbDHNcA0hojRkMsca55UpRUAbeJBYA7SLWWjWK2EBWoXQANLEAAPrOAAFKtFwJgAAQgMOoB1lAIHiNgGR+h5EPXgELF6b1KC8j1s4Rcf17iAySCjPY8QeB2MuPcKGMNUDb3hl8H4DM0DeUBBwYET1Mb8mlGSP
GEg0SEyxMTfECsSThMptAcgNNaRJ0ZsyNkgsKiKknHzbGwpoaiizPk6ULMha5KNn4SQptJYmh1HiGWhpMYK0tNafIcUnTqy3GXMOus/TxCqcGCWpdtYW1elbJIK926NHOG0D2rtOBinARKRZPsixPUqM0JcKMrgrNWnWBs+5q5x2JMQBOfZ65a2HKOFqkzs7zgXPbV+RcNw9LGeXXcsIq7MNrueDB98KGUKoSfd8rdHwt32c3P+9lxIPkCoI4K0w
IZfk/lC4FUDAUlG6OChFqlQXTAXEhPFSLsUCXhe5R2xLKVvwxYi6BYBSx8NRTC28pZH6mUpRyh8PlWXTDmUhAR9KsVgFjFZZSwrQH8vBa/dyniIG30xVKko8rF6rxBQRVVt5KjAKVevW8WqvK8o1fBQ1JQP4xSofFNBiUeE4JIbgsh9qgVOoIc691brPWuu9aQlBFsaH9ToTap6JyTT9QhGw0anC652tFfpC180ShLUKCtMOYihhHU6JoBARh5gA
C0ED0AAPLEGhOcUgUB4ijF6ETE0j0FhLBWOYzYX8kjWJNIDeI5wHFONmaHB4PNNTMo+N4pG1tGIBKCaCUpsJEn42ibWiUuI4lkznZSFJtN6YZOZtkrk7M8mcwKYO3gM6BZygqfuqp4tQx1IlA0vUsBZYtKJG05WnS1YIFdKMr0/SJC4G6EMk2IzUDXMjBMv4UyyxxjFTmL2btNRQs9umAsGypyYWaFsngdsPbhyOT8o8Ncl3x17EnM2HzIDpzuVO
B5ucnkrleSXEDqc+pfOOb8iUp5/mxoIhlCFfK25WRJQyyxSEILuRwkhWc4nbj+WNXqglBkpmColfigiLErIfmk+isASQpP8eQlpKyz99MoSsky6TVlGIWfgnYyBgi/WlASgw21U1HWkPc25zzRCHPUKaoGtqwbo4EZYRGgw7Cxoxtc8xVutnYrCJTaIiokjSCtRgEkAA4hQTAmA4BJGhHoUgkiACadQuwACtcj3HrRIExTb7gWJ4Fs9tAMpyNZ7c
4/tbjimoG6BpKQo7fEeMQ+jYJp613oCiQTXky7SbG3G8k6kaT6SOkyeUnJl7T2FPcX10JsI1t7pFiaFUNTgMe3vU062csTStKVh01WzpP1W1AxKb0xBfR/tLIB2p36wP7g/LMx2h9yUuzg0srMw6kPe19v7a2txSwQTLMDsOhzI5seCyaDsZyLmkfeTcjOf2aO50drbBjuOw2sfw71RzdcAXKs9Xxk13cbN2dUzZyz09wJCtZ0znl6r5MESXvbT+
SF/jC/gguF+/k+eSv1UChCiqZcKfp7K/TvGtLuV44ZVXB8NfUSEyK8F0Ej6M9vFfAzxv+c2cN9L7n2q1cK9t15blLkuekrAFWyTLO3cILCvrunc5/Iqbd71qX7kQ8YRtz561zmUpRZdR5h1if49eeT0nj1PqU/p/SlH1gfmWr0KSoEILVPIDhsGmFqNxAuGTQbqb/S2w4tJpES9sRzhCA8H0L0CgRWoDdBgHm/Q6XJEyK7AdDgSQ3uGLmDVxt71m
3fTsbsFFRwpylmaO1vtrjj3L/64jQbmMRvTsPWEim86puxNm2c+b1NN3pJWzu8963DsW35lt7rO3+b7YVBto7YsTs3s1ClkaUfWaXlhfVuymnfQey/SY16TKF/X1nOC+2A2e1KEtlllaAAVeBvn7TWW4AhzWWhyeluG2DjFnFaCRzKBRwQEzgPHYxxGI0Tn7DJwlEo1oOnFnEeW6HLBcTDWLhYM+UrmL0I2py4zj1lw9QZ0t1kjhRZRN00lkOhXk
LbjNz9wkOQmXzpSEStSc0L1j1r1T0MIxTilz1oQCxj2EJC3L2Gkr2r0GzAmcE0MCm0LAGTRKFTTKDERgHGBgFwAAEVSA4BlBWpmgi1JBSwABBeYaEJlZQeIIrKfYxWfMxerTYO2ZrUoWxEGV+XtXgyGY9c4SghGHxKcGTE0Q/NAEJfmebSbQmabEmeJcmckCoG/JbBme/LJR/A7DmF/I9IpXmY/PbXdb/Z/UoY7b7a2IAh9WxK7CUG7dpSA+7bpH
7F7BAiAXARoZAgA2A8jPkcDPxZMDDCgnVVMUHTMXgAgs4og1fAKbybYVoftXDVHSnEQyATHbsEjZglY0oNggnTg2jS4QCPgt5b40vCnSwv5L4gw9Q3jNQpXTXKZDnDQr3BlbTZwABOVYiKefTZ3GeIPBlMo2Sa4SFYiB2FuM3HCFEg3YdAyO2FuJHWkh3N3IEmQueZQnTRQ2ki3RXAXWlZCG4F+XE6+XVHk/+TXczfTRCbCK4eBQ3YzdkrtAeOTU
Uh8IlbCMTfTSiYiJkhlJlalfTM1MAV3BlQo8VOVBknTFTKPXQzqFzaEr1BPIwh0zPZ0tPV0p0jPN03KHPANfPQLJhdHPqVhCvDhKvSLe000q8biRvVw5vVaMRKAToLsZwZoXaZoI6HgA6IQeIC6UgA6ZwbATQGRJISrOtIxBtCZOfVIzUOIPIzI7gZcDfOsyALrP4N+XfEozUQzcowJDGMbU/SJAmGJDHBo1dAcqmDdNo7dTo1mSpTbbfU9L/YWH
osYv/CYs7aWEAy7Z9c0CA20KA5YnYn9N7PWdY1oLYsjcEfY1AbYBcJcLtSgvA2GRDQg1DIdbg3ZLDRQqgiOGgtHEvCAd485T4q5ZjH425dgwnO8+IIiYExjVAsEoQgMgCzjKEsCHjfU9ktXZUx3SQxrXXMU+BEXfEkVGkxlHCt3IU0VOEgiXTZTekpCB4luKi22F+cFD8EiunTQnTNoF+TknTdXSUsij8G3N3SoKij8HUkVJMRi0ShlH3WyTi9Q7
YQVOSkVHFQVbk3C93fimceBbTbeeBXjQyyUpeEy9kl5U1KkunFkg1ay9Qui01GimzXjWeFuVyrS5k7TNfBi8XJSpXHgMi+U6Ql3WTT+cFHVcK0TNkkKryXjfC/TQKs0xK8FNSmyvkmKlUtlJCTK7StXZy2SbTayEzIqrS604NWnLPF0z0j0x0qqr0uq90+q2q6qxqmq5qjqpqr1H0vPINCw5C14iAMvSNUMuw2NdEoCYqxNWMhLFvCoeIOATAItQ
gQgJIIwIwdLQgCI7AItIwQUI6Pw+ISQD6CUarZ6ZIk69YWWbtZsiAQGR2JszrbfIogbWWPrCo1AKo7GGoocxdHEUcubcchbVJOmO/E0JmGci9UYgQV/BcwYs9Wcn/CUcY07KYi7D8HcxWBY/cpYx7AQvpE8v0CIi8/GvYv7RoV4LDXuTA045Dc47818v2TZG+Q+RrRrL0ag2g0NIjLHECy8tOCCv4nOXOJcSMvqfg0Eoa8Ega+4VC+udC0yTC2Kk
odizy+S0TKSunfikefTQksKXKt3JKqSNWkVVyQTeygKi0j8FncqmPSqrq9qh2nqswgvW0kNeg0vYMmw0a8MsCM2qM5oSBFwtwooRLCQXaXaGRVqM6BAPwvNLsAYeYXaeRZgcYfMfAc4PwiIzYqrcsmfSslIz6TYKtSoDIlfPxLSR6rfforMTGYosdWeSdPs+Gn6hdeoldQG5o9dRbUG5bcG1bYY5cg9Xo6UN/AYkeoYrokYlcyAFG7Yjc4AmYzG1
9O7cGj9GAhC+Awmv9FREmyW9ArMW4B4uxRxBms42WWmqHN83gZoAKCm0Wygp4v8l405D4pg0CuA34+5f4hcNfNoTGdceCsCxC75CEjjGnbjRWzlEzJeY0kVETGzTW9Q5wC09uaTXjBNZWgzM3IXEzJTcXCi4TCCJCNymB1y3K22vQ+2x2mh31K1Uw/zV2xhOgwM8uL28LaNbhcQjQjKUh6akOjwtadANgbRDsZwcYPwngVkVoUgVkcYVkToToItQ
UIwZwRIis0xS6yACxJMNtHfQGVyUsKuk0VsvxPreuwbLSD2D6r6k/LuibX69uy/BJIG1o3u9o/uh/RG6GrGUeuGiehGqGmeiAOem0Be6Yp9MA3c7GlWNe6Ap7YBre97fWIYPeo837e5biD8rZR88+zUdsxmmHZMVyKtUsDSmsTm/8waoC7HKEzer+6jH+7ghMFeUnSWiuUBmWyE+WhlWEsPUTQhkVVBuBrWyTEZhywXA2gks3bE9kuxEh8ZgK4yk
2rivkpcQUxixZgiE4ly/y7ZpeKxz+A5wS5BHQiq2NWh1qq5r052xh/0lhgC4akMiLLh+0r+Sak5+zJvWa+MioTQAYIwM6M6ToIrM6bACIrsTAZwCI3AC0dEyoGRVJ3O6fc6gurRiACxcSox/R7gZMM4HIjrau9xGCrxPfXFpu0bFuoG2o4cpdAGq/Vxyc9x6cpcuc+GsekpeG1lpG1c6pdctGrcjGqJrGt9XGjexJ17ZJ9YgYNJzeg+jxOcZcI0X
AvJ1AXEyHDMa42GO2Cgh2DiDm38rmj2wCxgy5fm1gwW7+4W5p5cCHQB0mjpqp2WiB7hjC6B9k6CC0gq5ibixw8TKUwq8TAKAeINikwZunLYMN58Sht26htqtq25v0/qh5wap572l5mvBwklq8dEmMgRsO9ASRXaIraQA6ZgRoPEC0GRMrFRZQegeRbAYgToJA5FpItF+fIGL+fF/tQGbyX6AlzfEx49ejE0CxksYbXsylgJ1u8/Ecjuhl+x4G2/P
uiUCG7lnx3bBADlk9Llwetl5Gtc1G+pTcpe4VlexYuJw8zeyV083ALsWVxJ+V3TKsa4e2F81VuMS+zV6+rtGiWZZoHDSpl+jHU1nHSWhprOJpwHABNp9JljJClN51sQ+0t1ilTUqyNK9QqitB/TfilXOZ+KvZ5nUTIj+ybTfYFuPkij3W1BkU7Sz9mzTDgKg58N9Q7i0j0K7CVjgK/ilCT+BEi2/Z6iJBpXEd2SOxT+Pkn+aNs5u2i5+N65lqhqx
T9PRNvqvQsBth0LdNzhzNq8MTzSARYOuMtNJLZoZgSRPNC0VofMIrDgAAJVLHmF6AiIOnmA4EkAOg2FbY0bqyLu+nblLpxazHSIHdutMdQC2VJc7I8XbJsf7MXZpb+rePpZccXbca3Q6PXeCc3e3Y/2xmy+Ht5evTCYFdPeu3AJiYPLxslpvb9COgfbgPlYXHjHBhJ1gzppLBVbpq1etkCoeKuBom/KfqNdYbeNA7qcSYg+tigvhx2A9ntfaelsQ
+6fttQ7kKwbV0E7Z0QclwgTo+90k244on8m9YAl40TBbnBRlN1qXlF11u8u27I5IZE9or5PZRbjItjF8ofHMqwfmdNRWbY+WZfjMqB4CoMvB95Jyqh4VRe/4/8imZFSi4wg47iv8ie7t0kyY+2Ywa2YgQtOTFB8kyR/Sux6u9O8pX8gO4ZUFxp5FV4yrQIo3jO8kKJ/0zNyw0xIgTR5VrVxx+I5s1J4cqKuO5syKtZ4EsYqIqkmZ/fEl/ypk71Wj
yofk5U4doU+U616U5186sue1718191417qnod9PU7ds089u044bDNebAgyk01OZmvcILYgEa3kRkXGDzSKyGDOgGHGE6DrYiPkUFDKyCE3B8/zs0Y7crtusBhaG7TC6eprr68QzHdhgpaP2nepccYv0aOvyZcy88chqfxy9htT/y7KT3Z5dnsPfnrK8iYq+idFcvZq7g9WjWNwHS0a92KfecUPjtn+C/bBxm5H/WSZtKIG/Ev64Nbwyt5Nd5vfvN
fAvxytceRnGaDFvLglo75AaddW8gfhSVqys0j6ZgdUP9aXkl62C9fEy1PdaweBnP49dmRP+0pwn4vp4jf+ysmkxoj/54NbKAEaTMQwgSgCl4mPTSOzQwigDtMZVWTqr24b69jeKAw3o6jU7mENOXTIMjb1sK+0c2twdFBbmM4/NTOEgdLIKHSxFYVEbASQNgHSz4ALovQTOkkA7C7Q80PAezuo2j5+cJQFiBcEFx7a4tZ4xjfIqn1aajtXqh9LPp
UQS4RIHGbdfPmOXS5F8waq7AelPSHq8hcu/jNAp/hr4+NQmt6UoOdkFazFSg8xVvqu3XoJM4CdXP9HUF75Xk/sCYL8k4kVIddvYYoAplcWvp2JywdxB2I/SA4L8amfNUmtNw4LWtzg0kYNnBQdbLduaohNCr03f5u5eO3/BylJygHgQpOYvHlPkM/i8cCh+tENhz01ylDCUZFXNpqSKGako2mpGoVUJKCN0uOlKEoR0J7hdDH+p/VofxRaGMptaP
QxBCMPfCDDJB9kWHg+EmEPwxhAELnDG3QRq8DeJvVYWgLWGoC6GyvBhkm2wErdcB1hW3mNW4azCVaRneLK7zmoSA2AUAaEEkDgCSJ9AkiBABER4CSJe4RaCgLgAGBJBWQ8wHgaixj7VkgYr8ftsIL8TbwxBpQCLjswlAZ8esB+Sdtn30HfVc+Sguds4yaIKCl2U5LLoYPL59Ftsi5AkUVzr58sj2d6E9k3zmKVdrBpQLpO32vZd8LQzgjJlOEqC6
tOCCYcfmKD6yFNiCAQ7eDihUoVNDWB/Hmm/TNaRDLWjTa1i0C/iIZFue/KWgh2SGQA5aa3KBmhzmbfxeeOmKTvqIY5Ek2KpJF+DUKd4WULS0ESXlhj1xRUuIkvOEcxAF48pDc+o50cigdH2QnR7FfHm6NEy5CEIEVLIaJwiqDDPR5qV7v/AiqujtU4KHWuyUjHu48USwu0g7yN7oD1hmYzYVmKUIy4+Q5vLAZbxwFacjh+A+3vp1biJivmLvUOtc
PQDpZzg4wSiDIh4BCBughAXoCbE6CtQfA4wOAOcEICAiIAtWKsv5yBiUQy6d1XFguGhEtlj0a+aLmOji7Ii5BVLRLnn0xEF9GWPdYvhoK8ZBMyRvjbmJXxJFaD92xXf/KV2PaL0aRlgukavRsHxNSaDg/WAYlFhnIJicra8lMnEqHxlwMGVZB+3fY9dr6s8K4PDggiPFQhpY8bkv2lHgdZRkHeURBAdiwdN6jrYDuA2Q4K1j+vQ7SpkNNFcQX4FJ
UMdszRLkT/4vHIMdm1ki0TrRQY8PPRLDzNDKUmuaYWyg4lK8CxNpZYcgJzEbCaGmAphkXjglDV2GFYvTlxKAha5+GJnTwhUCLRwADoMiYYJoHzBJAysmAXaEMFIBdgVEDAi0L0H0AjixxhdfgScG7Y2Jx2QXRxISyHap86JpQBEdxFkGfV5BSSJLk4x3GqC9x6ghkZoO8aEi/GZ43dheNr4hN6+N4qkXeNALN8RWT4hkbYNfFd9JEbI8ZPuCrRWN
tkbQ4CZ13ybj9eujiG4DOGJxz9niYQibh/V2JRCoKjEIOAt136YSkhxrTUUf3wRSE+hRpJ+CSWlLkltSzFHXIlQpJxj0ejotFNRCok8oqK0EQYR7i4icSoolE/Uc5M0irSyJVpRAbGxWFbD1eQkkSfc3VESS8BPtSsWFCvhyRne+bBsRAAtBnRegB0egEVjD5Foys9AdLMQAOhGBWoSQezpICLROCo+QIvgVdW+jJhpxgMOcHo3smDtxB7iM4R2T
HQwC0Ya4jyRuJxHeTlBndHERlwCmMggpR4nQRX2JHhTgpx44wYAVvERN4ptIlvklMZApTauXfToBlLQLXlbYpBW1t128FDoipP7fYDqjmT6sxR8/cSeEOX4yi1+cox5Eqy34YTEmWEhfu1NdbaiNu3Uxib5HKFzNZp0YxeN/H9EuQahY081GRNomUS9ZpuQ3NODDxkTDZ0wJceqUl5lMe400tlLNISrskzhbcCYTRJwppj9CGY/aYJJDkYCzevVY
scw2OlptjhBAtlJyUcJyZSBVw35hICLJGALonQZwMEV6DdBHhlQOoMwAujQg4ApYI6OlOBmjiLqsfXuKDBskHE7JuRFPu4kcrwjpBl2CdlOnXE59NxGIulvOzS64y1BK7QKYeLL7HjdBYUgJoVyvTXiTBkAMweVzpmJSL2z4q9hKy767Q2ZAga8mhOtqNSFkH7XJmBMn5DoywTiW2P4lFmVTxZ1UlfhRmQkzcmmtrB4grLgJKzxJKslDmrPzHdTo
IRmINtFXEwWkaxf8/ijin/4kMb+etB2fbMUxmU3Z0AzSqAMFTC8lcJERiogsUzaYmKeDHBXAoMw4KTZhCwTIMLmmkKeJcUPiemODm0Lsx+0w6cm2jmSSzp0kzSOig/BJzLh9Y1OegH0D0BcAt0VkKVlaj0BOgJsbAHmkaBFY4AnQSoB+LLIosq57bEEbcF2Dx9cWMFecQOlT5qk25ZLZGKuK7noye5mMrcf3KxGF9/JI8gmWPO6ITySZ7+c8eTNn
n8tqZ6NCwZACsEMyq5L45mdvX1j5ht5ZNSZFvy/iB1KwvIrOPzNPmRcPwtwEUcN1gkHCGCCEsDiqLqnPzHEw/BIUtzVFtSXW38/CTqKwbvcqesvXDlZEGHtxJMS08CGbk5EI8I8n8Kio7CMokM6l7ubysQoUoqpaJVFS4PAl0qWzCUsDLBYRDNwoxbZyCy1Mr2oWBy6Fe0+hesMYX7DmFp0jNvYSvB6LpgUy66QpKEbQB5gzQeYMwE6BCAPphAMr
IKDzS7RzgB0FREYH0BdgkWiittsCInF2IzgGi2GHGG0URcb4y4yxkiOMW2NZ06I2dhYt8lDzrFHjA8aX3sXEyiRTismUTM/Eld55EARefeK8WPjV5yUvxSqLfHrEi0wSp9iUwARBwZKXg+DKgDPonyYcmEaDNTUQwjcJRqSqUekvqaPzohssrtJZXFogkVRH8lJRqMKV4TOpN/Kijf2TG1CPW4lbWU/3KYmiTM5YM0SZkBUTSNVFo1MdtP4n2khJ
CbcOS7SOnGsY5UkrZVvBpI2i82BysROlk7FnRtkMAQoq0DqCtR8wKiVkBQGc6kAhgpZU6nnRBnjjLJtdUuj8si5lh/lx6GaPopi6Hx3JYKnGL3MhX/UB52IpJHjJsWjjCZ48pFaFNJnTzSRriykaYOpG0yHx9M/FYzMJXMiAl6xVqGSuvJr5pwAHWMDzNpV2iaVKGWJRBH/ErhtgrK5JcdIlmISMlPK+qbEOpWCqgG781qWN3ijiq0hBEt3BNQqW
v8zM0mTnp0sTmSYRlbcEBeMvRJ3cb+06g1KerNx/c/5vS0VDutFG/cd1AeQHuJm6CQ8X1GVMhdwRypHqg4JDNBWphyUzD91y8JePDnv5kV7uHrb2YRGA0oM+Sr64BTMzIXb9CUyG8BWQuXAi4MNFpBDSZljV15xM+G0ZZQtlrnMBJiyvMZRtzHUbDVFG7qsaruZMKzVLCzZeNSI2EQg63CwRmIlaB5pcAMiXANCE0DjBSAtnMrKyCSBnRlArISoL
0CLQts3lvnENWDKBhBwhB9c1AGU3xawzwuBRD2AiKfWozQVnks/HUWxkLsYVINfcaPIRXT0HFyK8eqiOr4RSjB0UzFdiorW4qq1ONNvuK3sFd8/CTav7LOG4hbJFRUS3gB2p7Uw5/g3kXrEyiSXijsJHK4CpLKQnSyUJsszAlfJnWJD8lC6r+RKrlyS9+KkvfBiUu6koz1Z2lHLdVrEp399MN6yXomHSG6lcU8wrQm7iAl1aTSMqOVAmP62CY5U9
uDrRyVG3UcvZeHYhdBq/ija9Mk2ynpqW1r6joN48JbSLl1VzKyNBq0OcsqWX7aqNwkhjXsJLGiqTp5Y1hZaodmck1t8ksgYpIkB+xHhuAItHmmYDxAjo8iCInACLSNBlAjQM6AdCLSNrK55k9FjoyTCQy/gsYaNan27Jxqx03Ed6mjKTUzszN24lQZZuXZwqbNM8+clPKc2T0XF6KueVTNik0ztyZ7PcrEzXlMiN59a3ANwM/HDJtiP4v7DsCgmB
V4dIOAqbDhiUw4aIRoCmrBRezDrjWo6rlVNwnVNN4wziN+bsRFXHTCty6irR/wOZBi11i8H9Ud3QaCpYN3O2yP+qAQaYjd4ndivNqf4G6VavWSBTZht2zLeJ22oOXtsO3Z5jtFvKOcxo2W6crtimGLPbru0pzyB+sVqEYEkBlYzoMAQWUVl2gcAjAmALsGHwtC7RSVoO6uSCPRI7AodaAeHIkGT5EtusnghHYNk1VGbm6piryeYrTWWLdxVm/GTm
rsV2b81p4wtYTsCZ5qSdbi8nR4uXrU7qufm3YsStwCsggtVsQKhhm2R9sItCq7tRPwF1tAcUTKDDDBKS1VS0lk3T+tLutbSRAu8uncPlpQpLqGerW4/S5T248ogx2mcSmLg3idL4BwG+DfNJFwP6SGTEv9eUt+7jKvuEwmHh/oNTAaLSgyg0jlUGEWkJSXs5/X/qigraSeUB81M7NEwEKyK+HLBsga/0Yc4DOmU3QaisjYGAIqDPA+BBDHmi91Rz
MKpKSooN5Gt2mS7o1pmYEKb1szUpThp6UsGSNqCOTuRpd00bdtB2ng3Rto3cHvUqy07esou2sbuGRewlHzmTk8Lg9fIPwqyFLDPC2ApYEfFpMkRHQLQRWRoH4QGDOAt5aelRROPRKvrs9mmxiLDu2ztkDNiakzYOT7nV7oVma4eTjtsW2btB+O1vTDQK7FrO9paheeWsp0JTz2Pm2nQPuPJStcAZ0UfdRlci6YmUh83ncfKvqxLvIKMW8lVuRyr7
b56+mqXjioyZbc4cQxGcqJakH7Bqyu0/artXVf8UF4AvBsMJgbwbxMAq03OwY4xO6BDbunYUWNEnu0F15qy7eNTaPYpbV92w5fIn2CsgjorUezp0F6CcCOAdQfQLOHkT5hlAFAe9kYY+WhrQRWe4LppvEpWHusgGlye3LymlB4uGMyvY4ZS7pqrFde7NWuz8Pss9BPh5zcTt/wUiG+7i8wb3qq5is7Bg+rvgdFiOagKa04W2NBgi1ZGNW0Wp6E4k
Pj/B5kFU5+mvs5Ub7apW+x5K8B1Tfkyjis+dYftwkq6etyPKpdz0XiDC8OBCtyRhFtGM9iFox7FAQu4o+VEqYBu/eCj4ZYN3m8EXk91Nq0Oy79ZuMDZKXAWrS+SMFIZZJn1EtaIEgwnZQBGIUi7xhYeCSs1oGFh5tTDuqhV0aEO8HXd3Rhhe7sjliSztQxiQ/aTOPmpxjQeh7egDzStR4g+YIwNCHs6WdmAUIDgNIiOiaJCAF0bAGZPT0mGyC5h+
HI3IcnwzTj6fduRTTsM3HTNtLJw5jpcOwqWWrxgJnl2cVorvjGKsnWWrinBHl5oRmnQSvXn+aGdF0cEz1gATLgOIO+J8jeXpWpGYc8YXrLGH2CAccjZ2iXViYKOQUZds4f2rlryWdMztVRunC/025DbtcQvJEk4nP0uQelYzfphhCDHgKytd3Nk+CliHE8GI4yrIyUA4gkGGIBClHogmIXJiKaknVSsUMFQMHYGD+yZfNIGWqm9zTE0DYQcIg0GC
Fr6yAxz2u6dL71pueaTM3GXxDVSTo+DbaJw22jYLLcLc59w22UdULD3dC3M3gF0mgqQY40dqjZNLxZtiVSAcBpqWMcDz9kH8+RamGUX3wQYpxFZDwsSVOl9J2i7rTNxTVpqjuzgztpNOGn+LfBwQ0JaNP8GBLQhkQ57sGMsafdsaNiwBBIFca3e+gfABEQLn4BhQpAAcUICLS6YYATY/MD6pDPGG9jNopPhCJ6yhcdNzc7rDBykEGLYcEOa4xXuT
PJdAKqXDNS0VcOZmXNIUlvSiqLW+WKZbmws4EeLNCsQjfeoE6lIZ2ChazjESiAEIAuz7Ws/O4ghBC3630KaQ63syOrvlSzCjT87fTBRos78hV5Ric0rqP3TmT9dObyuuYUhayKLt3DWnRcJRwX39plPXXeakjAa7L9kREkJQ0wO4A5cbQS8aY24mE+jpq6S97rt5sKoxHzRVLIe40VBOg9nZgEYAoB1ghg4wAGUMFahFYhAhAR4BwBgBxWdjoM7R
ri1rIWX2UcQfPY5PcTMTzjDlgHmXqnZt60dKZ+4zXr8lPG3DDejw5eI+P+XHNoN9vYiv8O/Hu9/xqnYCd83AnIjt7XoLWbXwtAkwlEKLecQ/BpXWsC4XKTOES1iy+z+V9LYVd5XFH/gFBPfeTgqNIdUh1R8kzZQpKdKwBY8PisRGvOUTIL1skC7NJtkc9v4EnIW9REWF6qaF4l1AZJYtNiGRq1psCC9cUwXDvmDpw5fZ1wBsAIi9nTAHmiMADA4A
RWZQEMCTKtR5EF0ezkVmHGXXlN117VnXI7TcA5kMMpuQXs0VAq/giZlyw4dTW/XnDXljM/iKCvN6t27xk8ZDab3Q2YpRZinRFdLNRXEbMVqIwkWZ1AZWdj7X8QuGnCurgB8JnG5jAFFTh/gM4LZABxysk28reR++RAEyXb7KIt1Qk3OvpuH9VZxS5mxM1qsOUyJSF7oYlRyHejmIEY7+HfsNE9WObep0jbxed0iXqqMtgY48xkvzXfdCEWlJYntN
yHHTQ1SRDAEkBsAyskgAYAMG6B+FBQqZRoK5ySCtRzgxwG2xZJU3cEHbLWNAIfGxbWW3bfiGw+3PkuQBnLX1iFejqhVpmA7ANny18ezNh3N2eO/M6TsmJ/Gl5laleWEYrN06qzURvNLWcCqxhWglEeWSleRh42s4UyaE3OBCG5XxdZN8dRlqKu4nZ4vcWm/B0qsFLSTTN3+fR24m60ah1F63C/GtG3Ax70WD0VJ2jIT2ODSAvi1LeMINQI5/Rhfl
adkvcMDOimZSCtbd4NBMA9AcYAgH9POBiAFACgNgHGC9AhA2AA6D0FMm33wdcRx+/WRz0AcTjTt/TV/f6tXGUd9hxQb7fcsPHa92O0B3mfAcE6IbUDg9j8ejthXY7ni00HiqQc1rKzIJhnbgFrN2IjQmBcfdjZLBJG2zT0FGNskKK9Zy7N80m1XYKtDnt91wfC6XmalEnm7OExmzVZXVknbIcvZFAryAXznb9TT1oS08PMdOjSP53jKxTadgpxl7
FDUnMyYs/nRed+qpfKaqWgGmL4yq2gmCpP8JOlgBuZwQ2WdeQADuBzZyrSDE4bdnOmdyALZfj9O2rKtI83hydFUVB4dB/yJ0uVWm4HnYp52cZWdkZUfz7KQVL7NQXDb7zBpcFLeYBf/PnePFsR9PYmsz2JHYlqF7C8hfwunaZpmR+JLkdL3Y03Wk8zIaUu3TSwFAfQBEV+n5hnAXYHgAMHOD2dBQ0IQUPmCECtRTHxl3Yypvbi/QI1iR+x7DH7QI
j1Wv9iG99bcszZ/b3dEB0HbAdt6czqKjvdA670x2e98N+kTE5QdxOojmgRJ9vDfZGhW5PO3mZpoIcdylwi+lDT+QrvkOin5Nkp7iZuCKOhqlTpu4w4K3VWYSnd9BbjdgElV+KBCyNoKlDZeuRHnRqewIbnuyPF7Jw+0p66vAq26xq1iQPEGYCaATrfhSQIKGwDKBug9AfMDIhkQIA80E+TAG5bOrKLGXdt3gA8Wsfl1NNhRdl5dk5ftzrgXtv+ym
oAepmcZ6Z4VyXyCdiuIHBg4O1Hfc1BG47CDss/3qRs6wGdwZ1O9+IzvBb4wjsXTFIcgDNmFKed3rrcCcT1mEwPZ41wuv7P5GBaVDymy1ztj2x6HghO1ySdqeOv6nIqXjqxYpLAb3rW8c5/ySaXidrn1EWiZtNlNcRgNVKdUl/pomdLMN6pYhehK47jKlwA8IMQma44AeShP5t/sPEl6AfZIc0LBihoMhdo5Ueo52bNNw1eyahuH1A2iW4KUo9R37
ikjdy9k4efzGLgyBR9Q/Wi6P3UpD5PDg9UffIRHmk+R7K0Acn4RojDE/G4/5DWLPIrjnhZE/0SfzHFHuJudve+Rv4gwkDxvDlRf9Jepe9U8C/26DbNPvrxzAabhcwuEXwlwz6JaM8GezPB0pFzNYXtzWQ3YEGj0uf2UTGxE3Qd6WdEwCSAis5wOAHAHs4UADo9nYskMH436Amdim3gbbYxYlgZwpbmcWgDU2Vu9S9lmLjRCMXl763Ziu4547+tY6
8RbbrMx24Cfh3235Igs7A9hvwOvNiD8swq4iMjuojwVr8SgUndWwu02UrZMlfynavHn87vwbEpohBxsrAHDdwU8ruYmd3FrPd4Tj/qXB+0jdhXcScqMOv4STrtTCx39aBjAF/8MhXyUaUmZ4Nd61/et+6cwNZKPTrSE/vF4zPxeSBqpcQqtqOIKeNmJMGhae/VK+Sgusg5d8/jCVMG3UzCExf/NbclTwlByBzwkqC2vZxzTpT+4Uiqn+KOwDU4xW
A0dfjIDz/p7RL5LxhP4FpIFxZSopkk+73VxKrxgJ86yifczHH6xZx+DD73uy20WRQ+6JVWld+mg3fpAW0T4qPStXBeYtLXmcGPD6iANJInAGGj7JVBh0d0/+voXpnmXyZ7l/jXzP8v6X0at6PSOrPqbYN3HP5RARONqtje4coUQ+r8A6WM6JIkaAfTMAgoQUPoD2ukAzoxAcx2F+DV32i3NEUuo4hZqxDsHnIlJxpvjDu/S7HFfrqMZ0XuIbg2gV
4LphRhu+5kTKOMw5fhwJAym84AKA8Rvh0OeyxmpMz7cbd+2gHQrnxyK78cFfvDRX/LyV5gfhNZXkVhG+EeHerEGdblsmBO6a7XlxKDsQOthgi20+l319LtuWGSf5P0TuRsb9XdrvzhYwHvgBja/m/VOUhPTFh51oJLdo76WGEugmGTDsoiPyQDKw7EVbzdrg+o8P5H/EpVokwsfh/vRLiC9YGzBcTkTikwIS4cS6+CmmVPZRVppIAHD2W2jnCY3v
IyYbeCwwt+c0m0AGpHVEHUymVd2ogV/bZDX9dMDf0uBqPRIEuAv4HBx1RdMXtGohS6HVHbgwRRrBHN8A4bW0AymLBxn5ORMsBRhSSZIBP9o/c/wLggDSbWIDvIacEgCnEOcHhwsSHfyF1k/e+mnBTzJbSYChZVgO4gC4eT20At+aCTjAN/SEymRPnX6EoghA3rDYDRAqyHEDX4NtS2QoTKCQLgOhQQJYClAkQI4DmcPYCXAIIdPyyYW1IMSZRtAb
gi0hX4R2FnhHYBpTbRD4GCgARZwD8nhwVtIxlsCSCBwJvhv7c1HDVXgK4AX1sCCmisCfAmd3sDZApwL3VQA8sCgkHYMsFngBSJoRsDogqDEcDAghCF2Ad9EgIoDx9XBjw8MguwKyCAghpV+hMCJlCBw5kFphCDKUKILKD/AuIOokI/ABFngHyZVmmQtpLbSnsprNX2TZIQIQA18bPLX1aEmgvwNiDAgzkXaCagroPqCJtWsRuleFCAAGBcAcYA4B
4gZQC7AKADgCKxM0SoFIBdDegFLA/AVGwscO2QKiMYtkCgkTAnEJ2CI1YvNVkTA9gQoiSdb6TK0Dp37WLlBhUAsLXO8IICHAREIIKoMaxEwdlHusu0Gm0z80vXl3/sfrLL0FcJyQOzy9u3N40K9IHcvyikQnXt3CsInbxWrVfFWJ2Rs/QAEXHcmvVvyykF9TCEDhp9S4gZVBRCmgChEjYb2H9CnUf2KchaCfyyZ2bMq1nVZ/U90W9mHOpxqNhMM4
FuBuA/fxuA7yUTHXx7YDDArByCQKmCo/5XYDjBV3WgMOIIJSTHXxt4ddw7N2/HYEDp/+PYHLApA/E0uAHiNVQwg20HYC7Q2gZMAARbyYhRYhtAABEDp/geLUPdZdYij2BsHTAlPo6g2zH11dgJMEawtIcMLuIv/b9WIDwYKxn2BD4HVA9c/lGCkohe4GcHX8WTI0jtDNQs/21CueGBlLo84TkSnVdMLJjU9zuXYETA1NH31voRKD10CpiA1+Ewh7
Q2eFvppkAH3EDA6KZFchX4RMBXdWjbtHLAUYWeD/Y5weZFF4k+OxGTD0MYWVucPWVyGID7YRHHHDknTVwAhZg64NnAtkTCE0DWjIxlz1Ww0cLmQywTyBVpjjHIji1WaX/0Y8P+D8AcQNAttW98VwIhXdCsMVIJKYWw3ig1VkgdlFuAEwq4EcRRzfhG7R6wh0MgD2UFoAIUMGKoI6Dag7oIaCDSP8PjC7AoCPbhrRFcFACpkAby50t+V9Uk918dQI
4JnwhQLPUoIIOHdD2UDnQghGseMDpJdaIiICgSIrQLuI0SOZGIDBuTAkYhyAleCNE9Gc0P99oML0JtDZIFeD0CcCduEMC8LbAJXc8AuLUC40SawN8CYg7IPFM5mM4A9D9gB4n65Wwnj2whlIzIJaDewz7ndCUYQxkYhZkEulvdJg1SICD1I/7hgDGIbDHa88WRiXkDsHaGUuBQQrAiNFEgbyFz1cAkUT1ZoAhIFgCXIhANiFJPWSNwDtgfAKUDhT
cCHECFQlcDXxlQplFJ9/uG4PMib4SyMPhdMTizDDFRSMMVFvIfcxSobA2+ncCyowAPjBCeM4Gyc18X+gzDuIZk12BaHFcJgpO/MqRIZ3fCmgkDYwXTGFFvvBIPPle4RIPZQMMYSkDowoliNiF0whH0a118bBwLhXgLfi+VwAkH1+gbgI0FfgdUNtXnB4ERIAwwKVCgjVd24YSibDdWfr2AjkTeBDOAWmAINch/fFGAkorospxgpbomU0a0jGbZC3
5D/aCJXAaaZnCMZroz6IwjvohUm7QPwaENwjErHIKIEI/AuEdCcUbOAG94EaGNvpYhOGPQDOLNrGncUY6IXRidPDUSd0Bgk1SGDSAEYKsJ5beR3tIu0ZICxiHiUwPhir4RGIJjH/ImPWZHPNWzERL7SoHGABgL1STh4gVqHSwv4eYHiBWQCIiGAAwS4JBFEw8QMf97QtP0po/fLCJEDesZmO2Qo/H4KwxS6CIM8inAxMHbUPbZGF+htkB4jcFuCX
uHwi63eEIbdEQgV3z8UQ1t3hVivcO3FdArUVwr9pXMJ2r947Wv2QdavBvyiNlARJwSUdY+bm79Wzb9j68b4ZMBaAKCYmxG8TXTkLNduQhcFjAymdrjHNhVBbwZsF/UUPbt0FCGR2QB/KZESDslThxQiAItCNZpXIINnVDe4S1xPoPfGoXVCaA/MNPCMPPDWxZIJQKnrMOIJW1pI9gKZArDx4jKNwUPWNRW7CnEeHDVcBwtaWvha4h4ISUG4n8yNw
20cAP/EeCbK11lkgJlQwwdowolPjXQ6cDbQAObZGytbYHYBnAcPLgNylpQrJhTD7EYqLd98A0sL1FH4vf0tiZQpgz/knYGwNmRdwwITaBgYseB/ieA+bjvJWjW4Aj8BuO+LKksCa0WOiVo6ZHWiOIT5j/l24fFlv9KIY+leAdgAeHED9Qh/2kCdkTAlaMo1a4BuAV4GcCwxWo1QMDpmIzfi0DMIRsPLBqAxIKxYVwV9RvV+2ceKzjJ4rszIVXIas
K/hY/a+LXwPBQMRsDe4cSjv9CEjwNaNMCUAKISymY2N/YcGX6MT4AYyfUHVVEttAyNMCeJSdhl40VG7QwAobkpUHgxsIdgLgV+AyM5wLDG3h3zUAJLtbyZiKj99RRwgcS1XZxO6iM/X7m2jPEh4m8TxKXoLBcdpIkN2EPdC02GDRg8QzpiHCcaMcTOolxIoJgk/lFCS7icJKG9Ik9eyjd0AcPTOgjoQx16AysIYD8JGgL7S7AZEeYDYAuwFPU+x5
Ykw1fgbqM8JwDX/aE3bJbEacFrIywG1kvlbTUP1staydlEEECghqRFli9KL0ZjYYlmNxj7Y8Oz5cfJF2NxFmWIv0ld/HUvyxD0Q4J1K8q/OGxr95XYkMVdSQv9FFAKQ9OypDJkTUOoi1THr151ynXvz680JPFiIE0TUbgApt3MfxxNhEm4B785vffSFDC4rUTbtWHQ2mSiFRJUP+BrgxTxLjaKJiKfDWI18OYTiIthPmj24HQJo4wo5yPX8CIrfw
xTWEzQOxSgQtikqi//GqMaxvgmzDUDSU0iJxSyLM4D/pwwxMG2BJ9X9XpSWE1FPJTcUiylZSjQdlL0jlwblMXgYUxULSj4UjKJZTiA4VK7ZRU2cFaVD4qtGPiPwQohaABUrBiXCRw1cPthoZQOitonIuANcjEAvimIDPIttV6wUYm5xcDMIV9SxtPApYKFN7UtwKdTIQ7iirQI/FGDmRMCMqRdCjmC4EmTHUoCJmScGB6O4Ino2IWPjigvkwmTh4
ylQAl9gWZLChdE/6I4hAYwxMlI3Ux1I8DPUnRPEC9EzNIMSqEnNIuAHU9wN/oHYL1MxjFkhK1xj+ORxINCKE6EyCo607GKWStIfUSwxLU5P2nAbUx/0oN00zVKDhS06pQ8j+07yNtT/IEdP0TlwbNNBd9TfoKkcKY/YUSSaY55hSSrwXtJXgp0wdOVSgIKNT+jR0rNLLTA9fXzEQLoQUCSALQfQG6B+FO30wA/CXaEwADoFkHPtoQe6DaTTLacGO
iWA4eLXwywYU2eDIw6GKgwFEjlLnBvyCLhoh3QgBByJcEv9i+ckvRHTsQLgDvy+DAJJME7k4Q1ZIRD+XDy0eNC/NEJ9jPYzt18MDkq8T9isVPtwJConar3OSQ4zvgZ1rbb4xZ1q7fviH5pIFI1pVc7Quxz0u0e6299vk9lXgl04yhwptCcLB0iVclfOLn8xVEUIvcxQxf0IgoE5+NgTBnACAetTArfnhwsmMGE6V4qeUNhTpU14ESCW4BlL5SXw8
iImDSgqYOyDdvRcMlTUo5fXMzIQwVDiAh+ZiIdSXEw+H9ZSEyQMND+o/jykh18c7yUC7yPTIoIg2JWLXwME2MA4gyowTG3jT4tRU1SAEG+BfV1Mv+NkCDmGaMZTWIrDA9dS6CQJbTX1ELLfCv4bB2uAvw9DGIUSfMCLP9Y/eLSXBtkT+ECzys8SnjBQs37iMYWgI+gTj+VLtFANV4wCKTD4NPRilDcs8sGIVBE42OzjZA5JyMx4MwKKQyVwgj26l
5sieP8Dlsr9zMj24vKOsjfIMeIWyREvbPE5sow7IzDjskmJV4Yk6J0LFBg9dKpikk2mLRduGbbOETdstoFkkpkA7IsibsgqKKS3eXjVE1sAZwBgA6gSoDOgoAAYHwAzofWygADoKAGToGXK60i8F8V4NsDZwe6wUC1/DTXO8qg64CNA1XZxFEiYRYdn6zEgmZAmjYhcxnjNfov9NfVOCSE0RSf7Vx2z93HXPyRCNkrNUBsXjKjIhsvYtvQ9jKZMr
xlcTkwOLOTGRZjIJoojMrESd7YQISrQZwGON1cDUnYAoI53I11Tit3Ch25VJvH+iwcdgdVhBS6bMFJbsilSVUhR3QuSLiiFI/AOiplwk8LXDJw0yNP9AcqyKIEGlRIDoS4YjVIIjzRZsMwhtgE8NvpxUp5zeDGEleB0iWmJZ0SpJ0ryIPTI8h2TiAhklPwX10/C8z1Cgs1tOkgGfRIBxRbgjVx1RHkptLISpAirIpoC8khjOACIjVPADPIiHz5Nc
8rrKXA20l7nsy7IhwMv1c0qtOdSxTeQOYDJI5QI9EGolkPnB4cWZCYTDzCPzzCY/AuAD0+TanLGjkgmoPPCjSUugDCq0KyO3hoTa81XykgunM3yHEttTcDWc6SEyihTCfORjmomfNtMTzRIEvlMbW+nojuCEe2wiymFmMDzuKSw28yAOXzO6i0UC4BCC/U+FOuBT8l/2OIMoj/04Ug03KKmSw0lNMvVckoGMTACk/gKTF+8j1JrTL1XYBRhstQLm
XAWAiMRwL80vApyoCCwdS/hGsEgoTiJfUmJXTIwaa0pjqYsNE19zpLyHILq0rwKAhrgUAJoLiCoQK4U9fYpPihDJVkE9NCAeIHmB6gPvAQBlAUsELAuBIQHRyIvCxAKjGYlxKTicUkCLLctIEGEkpGIW+kHjb6H4NnBBCu/JtiH878lckYo9uAdyCAkDJ5d8Mx2MIyvHf6xIz3Y7EMnk9krtzIzxc45Iq9InbzUYzZc+vxYyojSPnYy07TjN/ELo
x1IdgMnWlV4yETKcE8iOUrBNEzktcTNS0x1Q3KkzjcswL5CKncqyqdLcmpyLjlMpFK45ggxMLCDxEzfMroVQi0OEjrQndSwj/cn/PwjuKeBJbizA/TN/oAODXUsLGoqfJajH8nTB0yTC8wOGK+HEqlvymomwvbUv+BwvkjnCshTGLJ8+/NWKqlO3Nii8TTYsYL7s/VUYy4k80yegN0jgrGCuCgyG2LrC6fL2KoydYqcKEo0Qsjc3eCImhAyscpIG
B0sPwhkQC5RHM0B5gIYEkR/PXAEGQf0lTWBg4gNrP686goOAoIIcWxAgg20D/wjygYzRL6wIub1PtC/Up0NmzRkhEQZiYYztIbTu0lZM3Y1k8zUHkW3bwtx1fCxxXBsy/IXJxCjkxvk81QiqryHck7W9nwBEnRI2QT+Mj9nVYBMuswCh7YLXJyKMTfIsl1N9I3OFpt4OxFztzchhzEzF1JTOW9L3OnDQT4staMSyWcnH2oCF8ugIgkTs+eJ2yls3
7Lt0qIz0J0iV4GCiPoruM0MxLLQkSPe8ioiMI/jowkWzmYrsr3PyjwQkjnlSqo/YFFTe4uZl+g0wr+BASswqjiTzrUnyLSCLKH/yqiFAgAOZdcHHlDbzyEirJ6y3vGwJvgq0XrF0YbYcMVAKGih4nCDXgC1L3Tk8nyNTzTZKwuWKni1qPCoK091IoK+C/+CWKJi2wsk4v8gPN6Lfc4cp6KUAiZysSlwCuKZQywauN1Dm0/Mu6zKwFpQj84cICLxy
EwPDiFTwyjlNa4oy0pWWiDSswI2ijaVUhyzeAw/1lIfUh0P9TnQmsoPgxs+uNuibygksdCA0x8qAQ3StoruCOit8t9SPyh8qmLoIASPdL2ij/JOL5lMa2V8FfCz1V8100Qy91kkj7Ppi7QwCvvLiShORaLBIjDAgrywEHNulCAYrHKShgXoAGBboCIiOhSwbABUtnAUgGaBxgdFnzcwdWPjOBslHFE7MvlL30JyEjJGK9CWckcN01U+Y/zNLtQpW
yRlgVd30TDWvG4FPpyI9Yk5zvbbnKdiiM7x1y8fC9kr8KArUXOxCgirkpLMB3BOzr9+Sv0Ed9gnDjNJon2XJ1oirgWONH4rXCUtthuzW6NlKR/eUoHNd3IouVKMIlHzKKBQ0FM1KpzGoqhSGnFWn8iEM4CJcq9WOVGfL14pMB29+y3Yo7LbuEwNmKhi5phgVsUB6ycSeIgvKPpWLGMu4I4yzMPgCRzEA0cTXgGCn3y4tPZTTKqU6qKzKgAnH2gK3
/aP0/9gAxKkPCWwsPMRwI8lijbQho19R2B/geMvGUmsSvOCya88rWMhfoarM/DWaerIQKQ0pNOeQg4TizscAArs1mRrgTLL6tpy5IIA45y8sH2Bpo6SqAiAJGiDX8lTKbKfiZsr7jQKvEzAvlMcq+2Dyrx4gnMB4/gswvQDwlZHzskO8gMJXA2gfQtaFu0dapog4wL5UMzbZf0JXgVwVxI1c7YV/ST9haVP0gkE89kleC+wgvNtgbU5phecEgVtT
Qlty5cFP8w8cLNyiHyNrNoiwDeUOJq/o0avSMQLUrJydrgy4AdSIEtlAxK1U8Sg1TXVZcBAL6c0IJrKmi0DXTzk/J5Czymol+CLySypHXLKoajpRsD4AnrPLD2UK9W0oIIBIFMy3MhFMLyVakvLLspkWZBkiDixwqOK8nG9S4Ti8/+mNqNazc1OzrS9sNtLVSOaswJKwX/2cRBrAjkfC5omzPgFjoyRKTAzoxDLvcwK38qtDUgsZnXLAqTcoSssr
FuBmLBitgMyqiLeopFqICiINtycAi2vijGsG9TawSw5OJLoKwu91eLLaguuEpNImRK9DdIzlK/1VUzhRPiScguBFxLymBIASP+UrMmrpAwspJTrM7QNg0vswbh+zStVoxMypUvWpICiqKzP9qh6g8JDzjwvqpgpKDOLNWjTypLPZ5Fw7qtDy2w08ObL3cdeoSyNo7eu4tl08FzgqlffT1l8r6gN0s8mNWaxQrbPHNibCjw3qvbDV6o9OPrDS0+pi
oVHW6QoB6AWZHLZ7OMrHGBnAeYFs4joOoF2hxgboDYBlAXehhLXfJcKqjvExwLHTvyfpI4hxAlcEQLQQ7iA9hYRDOvALayhnIctO4sStj9bqVwppKCM9ZObdgHRkvcMPY7StZL9kwIpCsJc/2KlyjKoOJq9Ii+XNvYuAG5PiLXBG4HvIcCbvwLtevGHB4jAcbZBX1N3X5INypdJUon9wQxd3VKT3IKqW91uUKqGY4qmSsUc24FzLhT3M6/Po4I6o
SL/Lo69UnMazM/Wso5VsxDOiqUM+iUcbp6yEKQsEgYqozCVweAOzCtgH+s3rjSylN/9GqwomzLUE0JswTwmzkxdz9UjiHXClIpuvVSM0o0D6tSGxosgKDZU0qj9u4+gI9Ecm0WryaqAjUMKbF8i0ruzoK3aWM9Z7B+rWVkK97JfrtUUpqzrzw4GAKbT/apoYDlgu1QqAOALsGaTxgSRGhBnAfMDKwLoTAHgaBgZoEwAysfQAtA4AdQpd9Mc62FmD
mA9GzybIawnILrkgPtFthSc3TBgzh2A6tnKq406rNjeALxvSiPM2EM+sHYjLw8dnYphoL8NKpkq0qWSzlm9ji/X2ICNaM/EIBMZcpmSJUu+NgHit18gbPsrzicUrkanoVet6wcItkJ+TqmNRsVLvKzRvEpPRa13KLbXPRu1KDGpfwNwIqtbOiqo0lbxsxvS9AKjC+2cwq4g56rFOwcOE4PPfr96/qp7g7mmVJ8bJSDpvIauWrKynr7mqxvq1QAmc
uYjjqhcocahW1zJFb9q8VsOrK4+cuuaZWlKIsbnG2pr08Gm7zCaakKp+tabxghCAubJWq5q/VX67lssblrbF1WDc0GAHzBtoK0AOhJALoAoA6gXABgA1JYgBEA1myxwQw89btNwCWgNmgUq0S6SBsD+/GNMKI7iH4PxKMKokpdCbmy+MxSyU7B2ZTqS6ogYa6Szyw+atk0jP+byMzEICKC2/SrgccVHksHdorfxSiNVmsRqsrryGfMwhT40CW1c0
iufWIJhUhQIvi3KjkI8rxvVfixas49QKg884iq0Jbz3HUpUybKZOr0zU65EoFsmW1NoXqKoyJszLom5quohF2plIpSuqpeo/qD6hdt5T565lIAq7yhNq/LxOLdq0CT2xrXQqz2z8pArk2wrP5SRrCWwWVpfQNxRdOCha3dw72wkofbsKq9pfbCK1YMFjmAbAEwBSwQgEqBnAItE6AmQI6AiIisIrHiBNAYkF9arggQuLtsHGcJC1uvUDNndQAuyr
MC4ynVljbm4pcHLCMjVyGTAk2jWPPkmUV9VfU4wRdzobM29wsYaLNBks+bWG5koc1fm3SvZLS28r3LbCQx7IiLTKv9EmA62/el/FO/dGwSVp9FIvSKh0BdO7NlGvXNUbTXSTPNch29gLNyZ/QKtyKtSiduJaupPKnFR7S7SO9C9Io9X1KN6+JuSyMIDtOZjKS4Rw9Z7Ok+q3qcNbtAHVsHELP+BWw3xM87f67zr/VgEkUShrh419liy2gE8sc7aO
883ECyme2GxiOEkq1i70E0LuNLBMRIFbCSy3atwSymTLvi6jSpzoGt18WLT1ZAuysGK69vOJrK7Euga22iMaPaPiU5kQohK6HOxrqtp9gCPwHDe4SULthZkD1xC6wm8rvotQYj6PuCSmYLoa6/6pi2fzNA/7Chq8nbb3m6wuq3DiBcKj0u98NdMboS7efQarxZORDiDvjAm+/nSa+azJrbqBTevKrAwlIbjKYW8v+Whj/wteJkqMI07gj9SujaJo
hYNN7tQj4qr7v24GqtdtqjOqj1kB6644HtBrkIA7p67gFYxvQi4elCCu6W6rVIB7kejeKfKTamHpkrPo7LMlC7qq8tTSoIBHr/rpMIDpZaj3AU3R7+azHpfhLW/Wv2Lc6jYveKc6+3Mrqnc/+CPzaclILKdfG2MoCaEykXFurf43gNmzQeeRPwT7/MgmVMyUd0NbDqI5Vh9CPRPMqryVy3rPjkJI4QJzhsfRVsuaVW81sQRt8p0ucR+VA/KMofu7
rr+6BE47pQCRq87qZ4lom3q87mO+3uSATup3rGqoK7VsV8762CqD6b6nowLELi5F0tNv25ewCg3e7Ls2igIcNqGrTu0atKqQO+Q0vs80fMHkQjAYx12gLQSDsIAjAFRHs4Yc8YGhAazFBo2bUAxxNnhLgZ8I999mo0HdCrY22K7R2csZJLAKO1uOo7KwySpLANunLseaURZ5tuNXmtSq8KeOoGzYafmndj+adk6jMBaPNQysq9K2xO2rbb2ZEBk6
VReVmVzgM6Noi14WxkOoxHg7iBuAe20bz7b/kjRr07kw49335jO4Ksnbai8Thna5itOs3aj25lvLA40nBMnq5WnlvZzFManu/6SsjXuCz+6xls/6l21lsWLWygcueKp25Bntgd/SjtnD24yTE6zlynZGysm4lAe77aQysPNRMBzXuwHz08+sntL64PskcWC57P1brPZ+qNatgLvqo6CBmkh7q886vI7yPilYPkM2oXAFLBNAIrC7BNJfADfSLQCg
FaBegTAFEHcAVmUr69YTkRuDqbTioChHQvrH6TQuaDKvDhZXEuPR4ld0LSyMw3ascCbmm+FACRilEvwawRJyyUr0vUfp5y3mrjuYbJ+wXLIz2GgTsCc9K7huCLROhjL5L1+v0ADVeWSytk6/sCcOgxTYvB0i5sbZd0tixwx2CH80W1+kv6uQ9fiHbErAk0M6Lc8duqKn+wxpsoiq9MLGrMMPkgQtiy80LLL0ArQKpbChccoStA8gAV1LlKOdJLSF
0rms0hgBm9rF9w1Kmmqr9Y5VKk4jGFL2bqGerJrlR+siwaGy1XNXOwhoej7pR7qPR6vyTzvMnoMgqGqpvNL+mpj1zCNh8Su/gR6xbKnij/M3uww98r8nKdFMMlrcbgoxn3ZJGyHfIt7986SEyFAy3KKByLdDWSWGMClYYpInEMHv/912uqLlRvlaJoVFqs3uG68fZGwLycS68sKzjv3WyPKCEhkoTAG+61cs1IJatGulrxPQe35axa1iXfCF9VqN
mQdgEpgE9Y+8bv+6w8V6tMDORD6uRrh4FobHS2hpU0pr3/TVODajUp+F+gkdJVmVziC2iR5Gb/XcJrS6CvURpH3qx2DX8NTKiPvp4cQOk5E2gQ0XF7oEuhKoNIfVGszy0/JqKfhmBtAcMYiAkgLII8qxHDRJZg6oM6DCiRCJdTtKFoHUS2quAtJye4dqICSHU7qIxIcSC2OF1rY6fLtiuIGlpKj8A5iIIU1E6GtcDKIFIO2RqIK4aiqbhkMaT41R
zLKXyrqipq7i+mvj3XwdwviIxrbiQ3HYH28yhJp9NqwwZ2rbWQgbAA4gWVo1bZU3yATHIMJMee7HEHKmx7Xy3Djz0wg/QMCpBZRiidrvsyuOF1jnZ/MDCPQzlPCT2KGuodKbOhurlRkA19R+rAQ27q11/hmlOaquUeVOkh4UvtQwLkDOWoqG2uyUJQNupdlHXHWonFNnAWQ0TF3HSy/cdoiEBPoMoGQ+wPsfGqBgPoks9WqS3oHDWu4sZR2o+ZE3
Hl9C8Z3SrxhWvQDbxtPs3tJALsHoAVEKCa7BmAJRAWMqKrYySAAiAYGYqg1Atwxy9YLOK96C4WeEpotIDFwI6C4Q5sTAEMhqTuCfgwyOaDpgzkSTbpwYNLjBX/JfLKcM2tEQ47s24jJcHc1KGwxD/CyjK4bcQ0KyBbwnEFp8UJOgIb/RAbZv0pC++XeVbVvITBwi1/vWfV65nh0+nKlr5dkIv7amftoflr+q4BKYNwvFoCrshh/v0af5EluLjzuP
2q/62Is7xjGgo5DJgjLx8oevHyysCa0yoxUaOPyUghUWA0LuNkd9TaEiJUbivJxlExGtRgeLZNme2VJyoQRtxIwxwRrBI6yysrAekhZA1SiLSrY3rBsL8I2Krx75h1wIVMKumwO4jJku2ErBuYu4Z6atQmhs4t4EnbvaKtNV0taLbGq0I/zhrC4GTAskqUrKdcff7lf6MqywK6mZwKKPUC2+uxGIV0MqMMDG/S8HyMYxp3qaxjJG5k3TLqUpqrqj
RpnqbVcVpqafrKrUgdKbKFp7qfGm+p1aYN7y401uN6QfbbvAq7Gp/yxqgp6ms5G4e/7BsDV6vtnjBspBzyxqAamvPhrU/GavO52KsaZMKUmqSJ1Nm+0u04Jd87OMExMxx1IG4b4T4NoMNRjPKlrtR7JNsh2xmss7GvAiYT6i6o+IyGjuKV4D/DnaleFFbdSImYGjzvYUVQVkomiBazAqJcCVN8WIGqDCNXBKxyoJhwbIjG1XbBzDwVR5+Nmz4pi4
FBGkpqmhSnqDbsNNqagjlKAyYeb6rQDAQwsKTE8R8pqsoLgNwV7gPfYaocjKtJMqOmZ001DbR3u8bN0ZCLGXsUSCEh/w8CSGYfMUCpI/Xt1pHJ9bJCiBTWme3hBo4piNEhp1OpGmBTHmpGH/o2IUFrUqgYtnaLAkYpFw89ffKIc48gmpcaAo64ecn/IPUbbiDRvFNX8IogiKeSYEP9qAqsKoXv8bihlhJJ5De66ZOriPPuzcmQJuwIrmIEF0acS3
R1xI9GLKYCcqHG57ML662UxVM5TGIFD0q1iwmEbLCdUeEZ7GrSvsbHDPZf7gDHfS4Gtp8VaYAZgG5md2fcbD2lNu3btUoU2IHwBrSEuNkUWKd5b5VfeYoSuBwVFqmimmprPm0pkgcLGr5ypt6bNhqJIvqHsiF1fHnx7+Z1af5r+d/nDtT9sj7bin9vRJz5zgeysgIdYZfntQ/poAbVg5wDqBDbVkF2hmAfQHiAcsUsFah5gRoEkRPWRoGPEWK0M1
MsWwiPwfJJKZOKjT1WWxETBfoAiKOIsitWKet38QapryeI1UpQSbmxsiDh84BUTjqvkofu7k7B1y0476S5wbzbNKtwZn6q+InRLbvBgyv7cV+4yuDihGpJlvY1CrfrZ0rYWMCya+0NJ1rpdXEmtjTmPbIxUb0W7TsKLdO9CK2Q7WLIY1LzJolssnzOt3ARJNI4+ICCkrUPMGFNcP4amnSR5MISMXJ6Dy97sMESNtg1Rnpy2B18T0IMCP8xPn1EOJ
JfCX15wq4FsCglsSOiWZ+ZcALqVSj4Ys6DIvRiyZb6Vr0BxCiIzO1Jiw2PLPCOUyShtHmSZIHXaiBLXJHDfWK4DjDT/fCLijGIai3dCOUxxGhD6czyKxIXAs6L4SnkGCmkh4EHWZ2QXQ9arvin4ZAIHV1oqZDwmOzY50fDFwfCcDhSCHuBjLXI8BODLVQ6xolmpIuiIppZsuicWkd/RjtS6+0V1Rca4cFLpG7EA7ByfK7/YOs5FE4spyNFhwtTS+
V7QkpYaUI2yuKrB/O44gYtol24ACCt+IeaqjBMMqfuJu06dysjKUvxfYXLXehLlDxAqFcdgYV9QLItWF8JYjCMVmEMXhIVwxg1TYV19vvGP5p8YAX/5xFwQrGNZpoNat01Cr9pCV/xY4XMVndPJXoV2rJZDwJw5X94vhCInoAFm7oFHxNAe6XiBoQcYB2Azoa5Kd9MJjQrSJDwvgIHU/U5OOwai7Jvo/KSlvE1eXmFksBjLwww0u4JhR6twcs5xa
rNO7A4AqNeS2O9iZeaHB8fpy8JFr5qkX+O2fsE7BJzkrLbuSsTvCKwWutSiN6AWswqzWaY4lhMGQzJ1Xxf6O8ia6DkMh31yLF9RsHagIgKMyH8WwUJyGIUm3LwYGlwAKaXzl7JV58iawoljyoaxLP10i105dO6WWxMJWzHlxcGuBEA8qJni61pxDOXG1guYrG+V3FYFXAC2tezt615pbLWBmD6dpCBlohJG7LM0de7WG1spnIDalEJdLLrQ8Jcgw
me88enWoojRIaVhwnRfmib4DWvOWOs5jrj8sHR5OKX7nbqbnDD51ZcxqsGGMuzsq1njOgxJs0AujaYKcZf+BhnLzO2AcMyiBnLmZqileCkdbO2X06CnAlMj7YESmzhh4toBMXsUTSP1jSRwEhC1mTOIEyytxsdLuIR4iZXfDMCdDeLyH/WWscTIMNKNqzl1uOeSBkWq0ZHNd4wRzXXWo7gnCWc4KXASAzVswItWudNctejS7AvKpUkwHBiSW18FJ
cuBHYBg1HmjSgHFbVaejeBk2vlOTbmQ6l+SjOAMp6fI8DvfUPO+6Yll2ZHD8pxrTE3MrMVMk2FpWodOb11tjfm4CK4zbNDxNrlPM2ZUBqNNzaHU+Iwj5pMCJmWayuZeITqW0AI8DTunFvP8MfO9YChBo+LNU3m164NbW7ljtb5NqCuWSE2MjANgNRkuxSaTD/Ukbvc6dU7Ddodl9PDb4Tr+ekk4iSCs7oyNvIkrbxTv85MNGqm2pQPf5RrepoZXb
6l8ba38xcmOZW6Bt7LZW2m/AzK26tgFaq3Q++BfkNGdegAGAoWSQDkZ0sRoETdRwTADYABgMrHSxAbIhZMtYSjKzHjvIZfUkb76dQdXxjxv/2Cm9w+DxjMSwbDa98eEheJXXUMwbAAQEgbiKpVMsuIUoInVuxhdXVKzwvdXrNXju+bvVmRYjtPDKV0X66MsSaJCJJ8FoZ10WGSduS5JgnCwbZ3NtrFAYh6+geIZ+Vrg07tJtOJSGM4tIaAi0w7Nd
Mn7F5WQsnIUqyeQZsNvpY6Tk4nJnO30t95dOiep5JwCyL1+uzjBr1lSamFrlp5bbWx0/0qf5iwsvI52wV3/y9LAtwQR2AQt8gJKzgVy9c53vR7nZchOV9FaGijUtnZF3QVrnao5XNmcp9nARu8NXVhdkFavWldxMoSB9l22EOXYNE3YV2xdm9ZjEMM7YEzDomlP1aNel0PNp3YhencJ5EgKzdY3Y85cGmmu1ktd7X6ou3Pt2dd7dZp2Z1j8IaVNI
03cV2rY4ea1rVd4lYSNpIK/UT2o983fI2VSxIIwxqN1XLlNI90Xej2mfP6F227gwEnhTS9rXbN2U90UzL3td5kPaH4DeVJsrGsTfgym2fYgKPWasjKMgLkDYsK92Z1zQKfWhTJLcE2cI1LcKjJd4aobNXw4bpGjB1TNMxtYhZmavn1AzZfpzJNw2Zq1/d8gMD3wly5Y3hpl+8l82zusgud3jiB8mglHEMijt3y9vPZGl1E/XdchDdhrQp9Bt/5cq
2LN6LFD2e1mucIiEV6E1aiC4SgMZaF1sPZAP3KMA4ymUTd/03aYD4A7LW/eqXz/mOt+lewOpCLrZO0Px3rZ052VgOgQOkVyA9XtBqxpbQPEwoVbER8AIYAiI/pItAtALoGRF6AOAZZpkRisfAH0APwb9OVXWKjPUoi7YCCWhCkwcBOoXV8UMbw2dYxIt0HK+AdcpWJphnZHRrV/3fo25kRjZry2Jz7fsHvt7L246PV/7a9WC1HSs8GhO+RYDXl+i
tuUXBGyTv1hvOWIpb8EdyZFSCb/V5ObNRSo/prJbg6ENJXk1sxeSHdJq/ozXkTJUbv7VRSovn9814rXPWG95PfF29cMg4gPJk3TDDxxW3FeJxhu+wNfl1SZAPnilQ6jc2ztKMCPxystlnddrB7dfHE2qtp0OvjZkE7NVyb4A/Ivjtc8kf022Awze1z4DwLvAOkDqA+Q9vNy/a9CzuxaN1EyFu2ACj2/R2Db7hlr9czDc4TmuGd/d2LduWXlhlrHg
vMwfiziMdxxAXD/uVY5uXnluys2PJ4DQ6RMtDvJxrzySd0PcWZ3Pfy8XuRrjfBH8I5dd3n6OIxjg22gBDYJtpdhZfC3ll+LJXhJ9z451r4N5VL+PkN5CA1jj9sJZojYNnaOOJ1q6DOhPE5Kdf6W914rOJIOHcE5+PIT1E8okCCoLel2F01XJ7SlDvFalLVDynaWZsVilapOsrb/fIHRHWlfa3r6wBffHZbFpr62jW7WpGL+V2FdS7Rtm1vkN9AOo
HGA/tCtiLRiXDgAGAoAXoHSwjoZoD0dGwDDoz0pp4gJnCSCGZA8FDtiE17T21J0oH9tIvWPy39QjwLBHuCYEPbktFTTcgz/gTMt0PwVDiYx13m12JYap+vjrMOOG4tvn6AWmG0lyQioNf8HodqIxvtnD2SZcF7k2sLhWohxi1Umf2BtI6TSHII5A401zFqsWX7LfnbIdG+/rJ3HFinecWGUBqOSKC4OMByO1NN5fKOQ6yo7u8Mtj5f9Ses3jiXwQ
4ZXL32yJo/w2X2z7AieQBbSrp1ZED5FeLymj19daP9Q8D0Eg7j3eMMKUuvcKTrJjoDZmPTxiDx+6L5X9h0XOdu9wA2pj9wJA269rjhz2X9nI4eW1jk44GzZpR7bX2Xt/CeZnTz44/52LzgeEPWNUwfdPWhZt2d524ty4CfOEPNQLzgujhUJ6PPzltfWOBdy8+n31w7/J/X7zvnb7Rfzwqi+PntlGFe27zkC7PPHzmMMPOW9xveeRYL78/AvnRqvd
uDEAziugjbjsLTk3PFrONdlDmolYCX6zUrdq2/9hrdKtoBRc+mOQNylVOd6TwU5UPrRMo8y3azmNJ/D6qtFYz3DiN6aAOl15del6cNwratPEvC8pA3yzzmR4ja5iynNPcNxS4g1MjySgrPnkXHIwOHxnA45PWtlXzD7WCllc/HeT78fbgqIi06iy4tJS8JQ9L1S5yOjLnmMvSKgaEAoBGgIQHSxMAcvsaBNAUsA4AVESpMsQakjgFeVA1JRSEOTD
Y8edCyy2MBXAbgI1aftx0RxGIDnu3uGejJQ9slhEXAwgtd2yEx/ZuaymefKTBmQhGqOJcMp5rcKvtjwsMPxFv7a9OAdn048G2Sv1cr8FF+jLCLQz0NdvYBDiyriL62/cGydDiHQ6iHPDhFqdtIqkLVTPNO8xYkzLFzOM3K4/SI8V0mHUzqcWStCtZaPnhto4TUuIHc6XOuLurt9q+joc4oPQo5i4q2m2rDD48UjgY5yFR93deTjsTukzcWZzzxb3
CB4I89b2Tz3E++PkTxDf+Ph4KbIpVFBgAJe6tayk6HXkwQ0RqPJA5gKeRzMl+HevMTz67vjdZTJcsjFRflWBy65gvaKOErEvYMjsN7AkTD+vK6tIl394IU/3aovtZQhkA39n/CpjiQLZMwIlGf1cWA40e/hKrqqu6yEqvtTIHKtHm/RssEgIO4jBbypc5k+Io+K8CeHUhKlvUY4nBn5tSQpYJsm2qDFPi2bJfBZyfj1JZXPsLhI7BW8LxPMt2N/A
5arR7A3ZetvX1W278Cm02o4SjN+HZEYkCjyjaL2G02+k7LX2O/bd37gi0TOvOL5Iu4vy0wO9KuH988uiww7vc4jvLrlk79cTL8y7pXWtoBbltbLn9p1Rb9mO4TByrwgQTvgNpO+UdRTzeySB9AYgB9nPPCrEkRWgbAAtB8AUlxgAzobvHVP2k7YE4ic4i1Y5q8rwnOKZ+uyJNxz6wk64u2QuR29uDtcvwJubvU2mpwzvfStfqvh+xq/0Pmr5EM2S
2r1wYLb3Bn1YsOermjKX7FF2w4EamM1ReJVNAI0ESd6j6E1UO87MUFkafD62AjGFRAbnP7cdkI9SGZZLONkqDOnNaM6Cz3a6LPJeZAIaPZljv2V2AIL46RPfjnFDi6pl4WRGPmYoDIl2xUxfZC3yT2KqZ2KjkS7w509hi9U24Pbs+CFeznZYgQtLhS6SmMu3DgOu31gZO17kUb28L3E4zBzvcBzxFdSOsE8jmYeybth4XOdWc6+SKmO1ydJuqNhK
yyyQb2B4JOkNnh4o2WH6jckfNLhy+0ukpyEf7XeLwdapX89wo/EeVQ8e/fAYHiE5RORKMi14e9Hngne8OH/o+RX/MkixUeqHuLRlRPdj6592YVyT1+Xyt+ra7RGt4eAv3CC0Y9CCafFwOLW0D22AtEQnsddLWuzDI5Uvsjtarjv1pac6ovHj+c8SoXH7G7ce2LxTCMf8TlE5ydYspB4CfmYlPqUhknjxdSfnverqKeIH0p6nPKLip7nOqnpdIoG2
TrA7MvcD5wlXTutwg83TiD/rfQ9/H2p/mXCBH65Semn7gcGaJAMrHs44Ae9PwAPtGAHmB6ATAHj0ZFNDv+Y5BwQ+IXYS2ZD2AjQAuB/WQwulMyvZ3bDagwy7CMKUaLC4q5d38Gsq8Se++uLxGXv1pY4mXrGWwZH6RFzifUrjD9q9MOwbLq84a5FoSZ4aRJgOP4bQW2tXp0pWK+5SBNF5r2owXd6ZDWkH7rMH5E5r/JjY2cIgA9MXlr4I4iF8dn++
QKDdEyby1ojxTOAeC15zJ3XMn/de322z0h+2W8l1dWp2x9rE6GWheX/YeufHnDhpfY9jl5dlFTDE+93Z1nE/5f2XnG6FfF4SW+vj1bznaPUqD0J6XWJ1/+CP3QljdYRPJSeXePOkj20P2fobpe4YLGtIZ6v3UH2TGhHZNgINPCQxuh/HOP1jOYc3TN2cH32O5waY4vE72Y9rdxcFG/Xc0b2hfVGsovE7BuoTmgxefFj39cmX7H+S8tPqHgjZxQFj
sZagyo3iyixvRXr8i3Nmwv14nmA35kwRuhTmk+DF87+5+gk0Z+eYX3gtsk8XGVzKe+dv7A/C7AuELlyD13GbjzdnDYnss/ieh5viNEfdH327jqafaS+aXhqqjnMf+32S5KodXoG71fF4Md9YeJ31/hIetljmrS2mH+R74eF3p/lbPC7pl5Xft1dd4seSj5ra4N2njO86es7nk/6fGB7d932yH1d4rG534o8menPCoCGA80KAGmbWoDgAek/CXvHG
BzgegHOBNASQFtgYjeQZOBLgaEYhD9Y+LVTzQM+wIQTDCy2KG4Ezie8jUWN+E92Q57pTczTrXrK2dPk1Jq9EWc2j0+4nG9EHd2TzD7q5Bf/VkTsDW/BqtrDPTyK+54BEnHM8hDprzr07VfBZ+51QcAlpkSHNSv5O/uijICPojbFgB7MmgH3IbM6unakxFfx9q+ISXncvTLlf+bnDp6c876O5Lf3d8KavPkLjfbe2enGPs6PuIbo7sesKangNekwm
G+XvjPnD6Dg8Pn/vyWZX1W7U+ZbtpXCn0M9B8reB1AdLO9cnkN/gePzyz6twTlxdeHfK4npxfXK18c7Ql0l/hCXeOzkTZ6dBLxs7rPEH8B6v26nhSDtejric4IU0v5nbweNMcL9gPF9bc49fS7r14kpAvuB9MfUVthYkueVxeBbf3Nr/Z0efb+d9a9EDYi+NvASaVMFI+vmvc4r/Nt0WLf793T6TF1X6zaD2LE/T8iSUL288PKhTGb5P37QhpSQv
Fvwz7QuWn1k7OKz3jp6O/TTJlYIPuT1lavfvx2E41ebNrD/04tv9fdQvDysbc3sLQdLHs5WgYgAiJveVoH+ZzgVkD8JcAc4HzABgNgCLQnDuK/eUsJk4G9TSmDsN1ZMHEDLRK9no6q0OmYmcGIaY1PL+rWHX+7anAh385Zo3BFkxWEWc/Aw83v+c3x39PC2/ic+MaP3q+sOT7kM8Y+hrv5gwwI40qSTD9Irj9H4ePuNbQAMphK2RKP71NdWv01rM
8HUTe/kPJe81jqTiO8NbH/fX2j+lNQOZLko9qNFf46/e8Cf7B03faxaJIO+bmLk/nsiD2OW/GcITX6wcDHledV/mlzd5e/DlPwiGBNABakFBNASRFGBdoM6CWaDoQgFkZWgN787vf0jDDjDD5qGqL3KCNEswgmA2eF6bE5xDDxKHPlTfw+8fnPXlvRD8JLVSyexSqz9lKiACxk3Tpwdzbt7nicjs+Jqj+Bfqf4TqDPfBga5Z+YX5j9vpEnV4AxsV
4ZTvOJF3CUsXxTu94JF+tOsX8zP1rwElkzR2iotl/W7al75Mp3xvZnf5eF6+RXxo7B5rPPlkr9B7xLwh413daSJ4i/zlnOCv0vM/TLthYwTc4s+g30G7gfZHjHgMHwn4DNu2ErHi4FOtH/i8dfrg519SXzQ+m/vpW3r/ef1KoxI2Po5wO2839l/92vszcfOu0tsnBzUW/mFMrRG58+bjLdtgAz58bgokclqu4e0nssbbtbs7btbUqbn2FBuM6U0n
kmIajv9F3brcFeohkEFbpn9/sB6ID/uudj/vEpdfuQCbNtUsj4lgU+TIDcZ/o7sZhOn8WAVn8PRJBd5kNBcRNkwCqlorc+Adb1TPnEsfju9weAWIDqATeUF7n2x67ICQZARQCM/jUslGvpRLXspsnPq0pcAcKJJ/CKJmnqUok/roCSGNrdxdi/Zs7Kf8/vKYDFGgptTcAQUsjgZch5nWVZZoClHPvYCwNhcdINtocYNhQZBCsltZ9nuFRNk68JNh
/lxqg98bzpvs53DAhhjsU85lpJsg0mm0WOvQCAOIwCMIHYD5NmyYMAU7csAbPd9XooDbPjYCtam18DdmACY6gJsoLi9sGLI+8hflfoBASltwwg/8cVsodqToTxGgcEDiLDrIK3qScllkFRolqcADNgqEthmCdz/jI8IbhvArtjf9KIHf9AqBRd7jrOcawn2tIdB4Dk/s59mSGM9GnssCQFIst71issEtKCdmSHV8JgdCdo/pmEItg+tDgRSdNHm0
CmTresLgUCdH1j2k6gQO8LXmsDdAa7cSAYFwe9pUD1XIICagQHcSrjp8nkH8CggdBdugfGk1zqkCL4ukCXLl5AXzlvw3ziN0QvlCCUgUf9YQVud69knsLblZgo7sCDJvqCD/4LQCYQSf8DbsN9SList73hWNcgdPcbdnJcCtrG98NpAJXgTg42bPm9n/sK8BXjjc51qlVBHuHcavlitH/ncCkbr0dBzuQc0juRwCHhwsiHmKDOHgMdi8qJhpQZa5
ZQVq1MDqZdDvpqD2TlqDT3ispjfkG4QFsvYHwtdcJQdw8dfMqD1djACBmi+9KQBlgLoMQAYAIQBWQBaB5EJIhJEEWh9ADwBCACXI6gPIgc6Ns9Ntq74t+EzN0MHhU4uvoVQMnGUx4oe5v+iJscRguInJPEDhnmN9XrDFxE/JyI8AYYCUvCvchFl88yfhvc+ct5ZtkrxNKPr6cBJvT8j7uDs5XOJMQ1g382fgBgEXnckpwKKMwCi20+MrC1euB4FO
FD1M+/itc8djp0h/mRM1SnYtdGg4sqXvL8xfA2divs2cUDtQcVXrQd0Lg+d4LlhdCqNP9k9p/tGvvRcZQVyNpSG5cu3uCE+rLc8g7g898PHuCXAQeCDemOEkQY4EoItz9J4GeC1LheDXepIDzPoaIHwR5cNLqUppgSy1ZgTR0GRpAk4nueDPLgqQ9gZcCDgdFsuOGuCwVhuDGtEmDsvuEsMBuzsgbgwkMYkWlkHn5sWLF+dG3l/5UIVl9AnghCCe
HADpbsThPPlDE0IQkCxjnakJvsHcy3n944IfhCUwVFAobjZ8jXpRBcIT5sGIZQZTVq8dJNk7cH9PRCSngRDVSD4CGNtccBnGRC8IYJDGIdigfAnhMnYCIFwlD+YGYpJCMIb/92AsThOKidFIeindJfGndOnsd83xqd94kib8+nmb8f2spCOIVJChSA/Z1IfJDAAWYE6DjkhSAJoBnTEVh0sBaBBQPMAjoGmR8wHbB8wCoxNAP6DIfkpp1mnrAudH
9AG4tVUiUvs0BCpWtuIJjYHYGdFY2txCqaG8c+ITc14wMuFpUvyoJ9Kx1PnmvdvnoX8xFsX969DvdqfnvcgdmLkrDnR8bDsz81+kx82fq0lIzvDtozg2RIJN74z+lENLzFq444gLo7yNxBD/IJ9jOsJ8iXqJ8ZvKtEtrgXErckVpJCNAodfiAdSvnODx1sRtNdjiCddpOtuQYMteQR51TXvhCr9MQCu9vUdPbkj0cHsJcZwZkDtAbh8vAeJgb3j2
dmXjMxZIf/9NIUACPWDF9Drjj9lfr9wajkJcV/nKNCNJb9cfr9wvMjtUTaghtpRgr9mjvQ8rfh84+0i2oyaibVGjhDCxzvl9AYfwholvA89wkfRAcBro3oVDDUYbso9GHlctNDf41NJvFcYfa9PoQagCCvfFaUpvw9fh/xyYSjDKYfyhNIvZJYtMaUZEv9DIYRTDrfq0J9ATTcCAcYCwFADDmYXEDyIcmCPXIzCPobzCDRFhDzzjhCkYbF8mYTLD
jQeKCuHiOdFYe9ClfjLDSzs4DHwcBCn+FLDtYdKZdoYJDkNFODcHudDz9jU94Iet0bYXtCextzD8vvF8qerb9S1k2sAtj58+gSHUNgaiQoIetCeeAzdQAcy4jdgSQjjnBcfziuD9aOLD4IeMc8tg48mQcVsoFHg0CbqgCBoT2kygUzcQ4WAZMYuPF6AmqkpokOUA9ph8ONgxB0YTDFdGB+EBkhIChgYBckToxQajnCkcoaAka4QBczPqDcG4VlCA
JhacOwsZc2nhqDtQYPDdQS6gL3hd8zIdH1BgW3C4liJQE+o3DsoT3DgqA78xEL5cDoGVg6gKyBSAGEQzoPmBJEEqdiAB3h8+q0B0JvFcdnkW50Ah4kfdlcAPbnulB7loodqjgRTCuHMfgnOAs3sXkc3oOprfk88Sfhzlc/qT8VKgWD3TlvdSoaX8KPiX4K/n6cSwQv1Azrw1gzgx96oaz805FvxazNvA4ylvsohof1+frDg6wmtEhoXKUv7qNDqH
FnEpktP5JPqTtP5OTtJ/oAlrHjdd7rIANizvAxfFk18GLh41n+oPYOAcntnkDUNmINlcepj+CEMjTCyKDfwX4fKM34VkwP4aUMX1L69REejckbk1s32jBUb6qPCbLpd9QFsIjUbu/D/UrShnCBXdDlB54CXFZwi0IWBxgGVgJgJIAUJl+90sC6og/ippgal70SCIIJkYohhbENVlm+kyhHAuZF+VFRNChhv5QtNlYoHl/DwNpocoNt1lvyB9sXTk
R8fnhP0/nmVDIEcLkKMnT8q/tVCa/vR86/vAi6wYgigocEMxrqENQlH+It/N4dtXAUjeoYi0OIK6pUTFpMkhumcB/tiYDJjN4hIdL9xzOP9rchOCdUhk9RXr7tHYcjDq1i7COeO+C1qtCd/suMD8nojCrrmrCFQRuE8hAe9x3ur8CSCcCTHnF1V1sXDNXsHsvgYdCPbqLQNtK/Dn2GIiMbpKQ1vph8z9qbgpEdsj0bvMDb2tZ9F7soDP1lFEI3sm
9ILCZtwgeaEX/sksnNhEDYarasSNgVEmxv/BOgdBdHpqgYLAcUsrAdhxZXvACNbniCNRhmCDAbTd/rmv8mEdyskDBps9ojVdHEHVd4ViaD1YekdNSEvhaEviZTmhQQ7wR0M3Ybr8ZkaRRvEcx0CygOouWrS92ke49dAmmEfEZSioHmY0aUYp821n3DDfsPCB4R6QlEab8LVLGhxIgyiKUd1kqURa1WUXutfdo5CJAClhX1HUBJAC3c4AM0AHlN0A
QWAMAZEKQBdoJ6DrEUW4Xdh4kO8rEES7FIcayBQQtTkQ5UUaeFgZh31n7P7sLlkCl8Gv6l6JqVkMAoqNS7LMDQkflD6Gq6dAHIAjKfsWCy/qWCgXhAj/UVAjQnOC8+Gkosz7lDsEEegAr7ueRGwa4dcWC/ZulqBZnktq5UXl39vpglU7Kr2CCXmloBwQTtEAutFJoQpkTOjJ89rmd5t/rAdB1A1lFym7cfgVshjobrR5oaq8ZpIECZ9hCDL9P7Dz
diLhtjreQ7KvwkC6h289YZWdoTkLdkUVMdUUZ8tRzkrDukdfFeZirVuItuVJEi2FXSktDS1sRtBUITChfnnBM0mfVupAxN7rt48RtlJBjEmzQo0jbBWZmtM6LlysVQTuCFIDdRHQnNxIwiDU2bJnCPNk9dFnDDJraHH4GwnHCjZrW98gfbcXKOnlbMG30tVrRDD9hh9lkYcjzuMWFwkm39/sFfl5pN+CbtiUx4wXzw4MRCEMpsh8I5gqQUoeat3j
tNEv0YHQf0Uhs/0dpQ2llv5IAbQsIRpsxMjlSoiGu147vN9D0vpAU6EZYZGXsu9FwJh4fUu8ENasqlPqr9xqYWQEwlEvll8hrIbUWvtzvNCEk1tKhsIm/liqvWZnujOM/wlJjkdg6iBTDii2ZlDUffKkEVMZBhuItJifdmAZ+YfgCjAb7I/Gk1EJ5iKjmUTBo//hpCFIQ5DNSLICqAdc9xcL2jkZnsdB0RzxUNsRtulqRtvkdBYtkf69ANh+ZE3j
+s7kZsiREScjc3kdFATpFtngVFj1ETsjA3kKYSQRiDNzhkCgsdFiQsTqwLUhIc8gTPcgMdljksejdUsVrVWQX5VsUMcjcseVjDaGm9FPlJ4MIA8jXkR/9TKNCCMsQwD4QS2VzbhXskxFEClvjEDCeEeCC7k8g4sY8CEsdcC5EjG8nLsVt4EC1izNhECzMMG8L/iMisGL1gI/Dsd+0QjU+1rrD9Lo+C1NO8i0Nv5ivkcLZm0QuCsar5i7Vhht7gpw
FAIQdjcMetiRIVcc6CrnFmILdDd3p2chlC8dUobxCbFlzYAYdTNpKChjb/mhjRpIDi+rOliNzl1jjZBDiGQY5citiVY7sZ29zwYdit/mV8wnjBiYEKbC5lsE8McSq8N0RhAccdfsOUZLYuUench4dyiqcRTjFEfqCv2oaC5LJWjMcZyQwHpZDccVKj0AN78ZELAA80OMAzoN0AisEkAOADIgDoPoAVEEWgBFKm5tURs0UvBcAElNBgM0iVJCcg6E
crq2geCLZhKCLBk5keDcTFl/CzBvbMWgLFo+wv4iwkYR917sR8uJtEiQESDYafuAjywYkjQXj4MUkbyV6/qg5G/sTR40a1DNQLfF9OsZNmzKh8eoSp1YcGoM18G9i8XjjtRfv2C1rgWi/6P+CGkfJkKXqWjYjrNCY9pK9BltK8XRJb8ekRZQ2kXHtOXi+55/pAcNYTnjxUVK8zZFV9lzpHcS8ZtD6XvU9FgX9chYRRi+kd288joVREQcesh9meta
Hk7DpYVJxkBq/9HkS712SEbCtfliQPMbscB0Qcd90UziCcVjjkIJRiGzBFsaMd0sG3iccY0oMNkAdksrBsTcNIuU8HjhM9tSJvjCbrksjRNrjQ3mPjNsX2jsYgjUp8WMDpHvk9JgdwiFsS683kVI9jHjrizRgNidvoeM78e/jz8b+5r0WrtGLm/i8nh/iqAjvs7oXu9ETn/jCTtSia8ZKiQCUF9L/qagLYWdDWdogSL/o/joHitiCTg18MCacCiq
GfjgvtSsDfmTjqcfpCz3ryjTIfyjuGIMj78WASoyEQS8CRelxCiogVEGbZLQPmAYAGwAisKIojAJ0AhgCoh/vmbYZENLiFBtYEJ9HYFAYtZ1lcRxE4/IUdEshGCIuEXU08R7UmsXMk0/moDeAdQCCPrSUioSR8gEc8ZrcZFIKobmYHcbR9kkbVC4ESZVJJjGjmgMg1moeI0x9K/AzPgNDu/LGtikbOJ6zCNlcEe5V8EfmjiXun5EAsWjE8Y/1ZPp
l82cdftqzj9Dstt8sl/jES6zm+4K8Rdd9RCPiCvmLZegUvsfYba8e8Txl4vj3AOQbcQSgcyRqEaaDFQeqQGsRy9tof9wZ8ctC58Y4RQUcRCBbqujlXnUSaJG+iOvouCI4YRcACev8EUQsDfrpU9KJKUTMUTT5PHkNtKtr497IPND6YYbRCidW9tMskThHm4DlHjNjEcQRte0gVi6QXbcV4JjcFPhKilPvEFrzoNijPolRKiXTtDibz0nttt8nvhQ
x5ES1sKCe1sqCTcUGBnZdziW491CVs5riY99lvv/UdEWIhdoBiB0sHmg2AI0BOgBuAASs8pHEMQA0yJIhpOgGDC3DLjIPuEp4jEPxHQrnYaFhW4Y0kDEShrAFY2sxDLkQAERRDc1jjFUCAQbsh+0Kbi9Cd6ii/qR8rceR8bcaYSJXLEiOSgz8aoUz9rCSosHDoBRmgLFcskS4cvcbDgpSp35cWv7i0dn15FwBxB4ajmiqkVHjxfkP8CtsTsZfmOC
y0SA90GIXjkDir810SSiyFHBlQLmvjvpu3V7sSOjdSVsD98X0ttMB9iuMSl88GEQTkCQNZ8cZF9wDJbo7SVgSVaEwSEHraScCQ/joTowitwbeirQYAkzSUsCnjhAhaQXW8jlquo4+K0T10XPjLCr1jX9h6w9se5dnkNUtK5leCO8e+c73PNCR3mCD20VSp/kUx4kvr2dFwHmTqgRSSBHoBsBQaBt0yQPsbwSiCyLJQ9E4dada0d8Du9rcFIwnsSa
8Rm9evoLISLibdBviTc+3vO8qsRWMLQZJcPHty8j0VMTTcM3iU0jT5w4QRcm3l5Au0eCs5QTY8i8RMiKxrniDieyjtXkhDOAbZib+Gy9XHrXjEBugorScl9qQUq8onjqTpMIuSwLuvijSSjiHsbqSHyQaSzjq5djSf0j/ZPcST3uQSDIeTjhDHTjgFq8TQFnqSMLnctDSdso5yWjiWCao5CQIQBVnl2BWQEIBWgKHwjAMQA/pBQBegNRV1thhMEr
nsZOKhG0VSkakcUJa5Ccnsgi0v91RboxA4TBFw1Edm8UsXYVbThptD5g6dvfFL8f4XhlPUREj9CZbiS/gySTCdIszCSyTq/jAja/i7i0kW7i2fjKxPceyIBfnotAwijtvcbq5n2B2YRajKTJRHKTB/jHizormcRwfmdyEYWdKEU3jvyTMlyOE2TZsTQ9JwadCV/lbCXIO8S1CUcCCSCMTxkeRxGifK9ZbtATQCQTZC3rXI+yf19F9MvpNwTejLQc
MwKQQOSQqYk1VPmCiBbr2SjbiN8qQTQCOsdDi4QcgZPKep8Z+OxD0IZRCGXju8uMUyhBRj9iCMZatVAsSjGOqyNgsRoiU0SvE7KU2d0CU9NqqcxTkjhij3Kd9i9wr9jeNmKkkifyDPXgkZVpAJDVIXXjBiRM9W4bEtXwXdc/ljy8qtkCC7noSCSptFhxiSxdeXgxZDbtXtKQdKlhON6Th4swSdUutT+yQN9l9NtShkbtTPSXt9U7v3CacQBT76kZ
DLigaCwKcvYAqYlTNqcdTCBB6TUQUvCKgM4BWoBQAYAKyBoQM0BoQJ61SAKQAkgAdANjJ0B24N8AxCbixw/P/5TcuZljQn0lV8CH9qIvPEBduAFn4cOFF8Z0sW/lasYuPGS1ocyEJ0MT9UdFm1+Kb89BKcDZhKYDtRKcGiAzqGjj7v1cpKTYSGoYgjtjI4TxrpMgQ4IhlRkv7in7pgjOdmj8QeqLoU1v38dKTUiwjrH52hmS9GkSqTk8fThbRDuS
LiW2sVPrzcmid5STXvbCUHunDRMOGTAMZGSGUGkT8icSDUqWkC/0vDjVHsyDsQbntgbtgVqIWQlFqdwVHadBI+PgoCjUoSTl7glSNqSbdmRh1TuNmlD/sRAhWQbuEjsX5j7VueNIBOOTVQVjVHoQ5j7ITmUH4JkSZdprVg8DjSOllADaMXaUGnuaSvFmHgM6dRiulg1NHSdE8FiiBD4sVcDUrs+Th0YZdPwX95J4RNSgLjrC5yQbCb8jhdEjlwDZ
yeZSnwZ3MpkSOSaDK3T66fRxgyZ4sj5iqhUCfZTGqVgxLyb2ciqflTb3vdD1lhATPsfPSGIMWSl6WqC9IYBSbqYZDLLrQNeni8Svxj+1Z6YHA16Yl8V6daSLdF9SJAF7x9APo5Q+EVh7OGwBOgE3d1qMIoLoGUw+STMACKafCZcbg0NxoPEYYpPEjUU/IrEsLd6cmTUA8QmDtsFZT1iRQ0YuBxiCqcl9uXB6j2OnxSaScVC6SdTTp+nTTmSQzTWS
ZWDgWtWDIdrWCZKYgiGuPJTMpFbABvEAV2/qvhdXHxF0/CnEI8RLT/CdHjAiafFSjIZSojk0iZoUrTIlnQSYCQU90nqXj08WGx2EQ7tU9mJRVybP8KIuG8k3sscIiblTzXtKQnAfticjnFFl6ZxiOzqWTZhpJjDMepi90YRIRYTLCUGMDC+MSAkeFgxFRkfKDhzluSUIFpiSClntwnuK93Xn1TqvjWTpSAoyIsUoyuiUuSo4eT1QIU8DrgT5SkCW
6SYTiNiQQe7TdaMScpdlkTZdhkSvYQkyV9sT5bgYydhTruCe6XBT44WsSwRkjj16ZfSryT2k4GfkyCNqfSoCVvSrqY8SgKc8TDhMfSnqaUy43vpAKmV9ivLuIVmgHmQLoCM1nAJoBVLEVhUKQY4VELdBSAHHpYab8o9QuWAH/MLcW/qiUkXkMNqsg7BxNssyfggejpqdOS2LnriWMdOCLsi45f4XmD/4RbiqacAihKRuwRKfgzQEYzS8QqJMSGeJ
0yGUq5G/j3wqGezJgtFBI1NMqY0XtbBxSTDggQmNNeIVpSUtOwz5SQWjN9oSi5aQni+GWFV6EdZN4FEsSEhsndupJUIDoXUd1kWtjEWbx51yr2F0Hi+FvFs8dOqaVTIMpEtAkZcdgkQDgjRDMTRyZYhC6Uvji6fOttSZVSsSOoyUya4DO0QeTO6bZjLEOPjtsfscHnLBS0TjwjrtqDiBEdozkGXPSjAoVR9kdBjpprUTd/pXEpqV49htk9cmLusz
htjOSAIDKzm8s6T90ctSZqWqyLnKXTNWSQT35pyjd6Vgc6mWWIGmXJYdWRsz9INGTbyc91nSTfT0AKQA8XPMB5EMCShADXdnALS4waUMB4gBQBSAOlh4ScFDwvKFD0nIeF2AlzpoNhylCcik1+Ko4FmYvf51WMoSY6XejUwYjo18IzF4vl4FDVroSKaZgyDCb6j82uVDzmXP0xKUkiJKc7jV+mzTo0TySgZFzSckbOIScm39u/G21euHxEIypSoA
WXkUgWbpTAiS0BNEiETIWapk5PpnjciRfEgcTCyDMHEyMHgulimJEsVCaeSvrpEsiaXbTLbqF9kPFkDVNsp9h4ENSzukkDwppYgfGW89PAkSyuWdfieWfEdiaU3sHblsS63t5iFSMTjYtEkySTgky06cbSs8XOjjAh4zlzvCkwmatjADMYkYYtaEAonv4jzPMTZEbsxJjjQjuHqFSgCUQ9BMNDF4jHGV2vDKECVoASJLghyXKEhzUrgokEwGhzSc
e+0gKTvT6NHdSI+tncVEU9TU2aDUNUjv5cOUqxGpJ+CnWRixzgGwBdoBrYi0PZwhgKyBBQNUBmACog6gJoYZEJoAtniGznfH61y3O75A6ADMr8rZheKjH0xUi4SJ/B8yU2f1lbiCOE+2Kc0k2tsgEgOiUh5kQ4qFnmyvUU25aSYYSBcsYSzmXgyy2QQzxKWGjYEakia2eki7CayJnmTvI/sKvUS6rC13YGpSAOC1xKVKi0hPhi0paVYtDcXGUh2Q
rS5fini8GLsAvgruFpOV2N0MdCykBhKE6+ijNMrCl0exsvpfOeiU7blrl7+PXlj4jIlraBwlOLA1E7AiesWEm4lpGcJgzBlFE5uN2shvJAJMxhmFzInhUfdjupbYGZEDXKnUQ6s7kOKBHkgMnREWOugwwwnpyXCXxFqIvrSqIrwipSvClc4P/wJQjT0+agNkdQlt5xWvAEkSl+QXKfAxZ4gBJdfvKMEjKY0UxJxFJNo1FlUrcNLdNH9mmHtFcAqH
iw3v11n2IfA5DrlNfEkQ1Vsr/5IzIcD4NF8coIl1Fr4kLJXuXOJg4CMVHCnixnaayZHElaE2slfkcUIq8YdIx0W4glZXopepBgQkYynESM55oAkBCkyoCbBhFWuNmFD4BG1RaAOEcItjFpMBTRupsx1KaDVkb1Nwt74tO4NuUqNpMFnoGNgOp9ojtVGKNt1LYvhyUvMHsxEg+FDnpwpwwsDyrHubMQ6k4hfOecsViU/xu1u+EIRigjFIRLxt8iRj
Lql4F13HAk1OVNE32HSM58e9NUUaBiDOXpiYGP9lJrhpydeSp5RuV/5xudaE3Gfr9jWWQTrqY7yamdQN/UAfTzvsojx4SMYTeepzteS4zJqDpz9efpyJuW4zmOUWgOAPIgysNCAkQGwAVEN0Bu+GdAVEPIh6ADIhCAKeBROaUANtoiS9YEQ1QkqY8dqnuEnEfgQZoieksSiTSFDi3J7EILIW/jtVpdn5Uv4YfNBCvf5pSjxEp9GTS3HPn8q9Hn4f
UUWDi2SySmSdZzLmYQywdsQzTkjWDoXuQy7CQopRrgKSFKS/cMrLnoYfIHiO/nz9PCcjAO2ZfMKkYFyMzsFz1rik5AJqP8CWhFyJ/i0icEhLVb4hgFatkdyZVOGo38olD76IPx/INcSiVsutSeZvEY+pzUULiN0w8uWNFpqn5jiMnFB+Altr1NDE7+XwEeFgalSuY4ka8hmCO/EPM3+SAKqZmAKh5sPEsVrgFnKmQQqqtxEg2HstTuvMgBNok9zU
BiU7KiN1DJpXF2snt4cBcaEr8m+wCBe7hturOsRzAmBYAqN1KBUnET6Nkt20oc1EBQDEwRPAKuBQf5M0k4kFeoygajtREcCJz9f/NJhu0H+UPalKNKqWRQKeSSNPIjYt//G681QrxjwnnxD//KTS9INcsludNUEWWroHELHks9nHVSpGbh0iE6FOKdnEJwkaI+ogZdsYlbEAhEj4s3mm1Twg2jb8XMS9gMy5I/MRtuzBnjbIN1Vwwe4KDEp/ANNg
/5kirgkFImRRLBUTYsbDYLlWB1S+2GwKBNgakspkoLCMaoLkfKNyIhq2FD5kszBUNAVFdrk4TBUgZRBa/5v8tnZf/OF0/+UTYoohOErAl5lWoogFswaKiZhOUKUSo1JcnP7cMRuuVi7PgCcMrZjo/sRtSRi/y3EUgYmhf0LJ/IMLpTPKEJlp/zA7uJDUDB0LxBVULPyUEEdZmHkqZnfFoZDKN7JPpTSCCbVusRWNQYgQlhdFflz+RM5O4vfQXudW
tcDJtjqbDYtHloYKxKDfythVrk+0CQRLOm4lL5LMzYAit94bt4L3BBgL/BZAKfhX4LYBR0lKUBWkDlqWFtcsnFSvgXU8avISC8n04r5nfFNBSoLUAimF7BZzJHBfcQpir/zYRQAKXdq6F7LmeFoTKgFawu9wYRdbs4RYAKyRYIkkNqbUf1tksSGLSL/+VFFSRf6w3hRzoPhQ/y6ek9y6RSSLk4v6wiBeHND/AXtDSESLhRVyLRRTAwz+ZSKzBTG0
wvkiLrQgtFZApd0hRZyL4RbEJUBT4KL5BmC19lMtq0aMKL1hjZOeKcKG1n+sa8jxkLUhLzTcovE1NILh6BcVlGBYqxe4HJ49Bd/0QkSwFGZgtFhSpllEAe5RsAiRCr4jMgHZsbQDBjDdR6rYKk6g1F8TCKIW4lPFEOUR1RjntUDnsM4uig4LfNrtEraN7ym+QdsEaZCg/cjmKvQnmKupihdwkkWK+2IRyFEaayGxU7ySOc7ymxabwyOer5qCcMZa
CdmK8RbmK02Rc41OYWL/FrWL2mW7xmAK1AuwIQARgHABWQMNB6AF2BiAPgBmgA0klnrtBWPuB8P7I9scckE8JwoXyh0KIJT+vrFd8rfEfgnkEMhVoKPQixSHLA8Ex4pvtRwqbk2hXsyeKegzzcZEjfticyaaZZzOrvvdqPuYS2SZYSOSQ5yuSbYSeSRXIG2dv0G2sqElmV5yDFomc+vBWdWZnzVu2YvxqkYOZd+bcRuof5VlSdJ9FaTOZ0WXUVNh
XyL7+XVioWVsBXRbXzoJMwLIlpVdewtrkMKiZFD2Xs8AxdBxOgqiD8JWbpwsp35UlrtEcmTgljBefyqRdk5sngZg/hmVEMdn+ICbOQKoNByK6hXcEzAlgE5qlZsoJHBsiqTdCNBcoL3lqHjhOEHVH0e/58OWoKP+GeLrtheKtJVxBIPnHUUnPg1OCFxZ1BRiKNJQoFTJeJxYhKDBL5OWdrgrQ41JXZLMhZeKxbLJCQagNlBeZvEjJZiLNJVUcFCM
tEdWF2MOpmwDbJeeKsRY5LosJ1zSRpTQB2X+stWYZL1Jd5KEpVBBaIt4L0BX4KJwrBpgpfZKAomFK24LfQEgC0cJeTJlRwp5K4paFKaJDpyCUc8MyorgkehYu8vJSZKypRoQWilCYT6FTMyTnVLjJfFLupY4RepXeKzwmzNU9se9xHMRydQXrxzWdbxHqeNRipVlKypWNLClhNKBpQOoOcesRmALtAjAN0AtgIQAuwK0BYOunQ5Tk9ooAJQyESdD
98mOH5aHFYxOdIvpG+pWM1/PvlHPnQVVmUlLnIjMgl8s8MbmgjhKpdMgNUlIFRwkZyMGSZysGWZyqfn3zS2b6sKwcPybmaPzSGePyHmWz90+eSIQhhBLyaHjyBFjz9ziNjM3kkUwSCAulbqGyphoUFy0JQTsh+JGFwuThLIuQIyTMKtKLxfFD9inBtexdddINJbpvlNTQIRejZnHIShzZknEtUrDzSmPrpeZdAK/hbaw68n+FXEiuE/UgxKZ4riK
j/jWUCRbpR2osr0WWruFT+rFlTRfUDX+SllkgE904umm0tGTiRMpReLNblbhBxdWLhxZ6K8UjIKnhezVL/PRZiwgE9mXPKN7/o1olus/z2diwjNwqWLOZVbFhUuMNm+lFF13MfEjuYjEqVDpEPwmhIzkWL5NZYgDtZfWEWKP5E4hS68DMTYzUPDcEABZHKQtoUL1EsULJNrfEkDPIE2Nhj8SCNshAsVxIcrhUKuhXX1ofBKE5uABI7yl8osNPPk9
1jOEtUh8dg8MLKkNsqxIwlNNvuh/zqroHcAcGuUmJiNVTgHcK1uaeEiJXfESJabQmRY6L+ws6LJMOKLcbqQLZsmzZkAonMI8lVU/0pAJV5aLR15dktpehSLTBZfyLdg6Kz5ayLIQZVp95bHlD5S4TWaFNy75SyLE1pfpeRXfydhV8K+yg9yOdCu4WcshjLUm6L8ako0FiTAhfZWaKRdhdyNZHaEjiIAEuohlFIeHRsfjkNFomnx4hUucKkRarkof
GVNsxjgQTbvGLAtvJCSpEsyR2uMJr/Pvk3qqzNSmKxZK+cNUW4gLUdwnKE8ulVLQZQeU73MwqYBTXyxUuRwKpUJlI/OtEeFXWKHic2KpFfNKaNItLztJazaCXwrq+WwqqsUDKRFdVKwZYvD/iRUB6AAdBHgPIhdoAfZWgJ0AVEPa0fpPgBsAPIhWoEIA5YrdLVVjWQEwP6EAIgxzDGBZYfcuFtqbJrl77rBk/lP/R8kg2iC8uqxXJLXIYVjlMnAv
sAFiTn9nxc6tXxZTSokTgzvToC8fxZX9y2Y7i+rhDs7mWjLLknYTDDOBKtFq1gewnEJs/l4c22f4IZbug9kJSNCAiaJ9RDkvl6ZcZTxwVFyLKFaKtcjaLLhVy1cjkqLoLoHQmJNvlnoneLFElk0ppHsAgYuqLqshYF2JPXLOhRIL1hQZg9GKMrrTuMrf6PpjoMqlcPNmRIVZbDFBztzKmPJpEzup/V4lPY1xOJsr8RXjU5shnKYxdnF7iEI4TlWr
Kzlb5AghW4KqogYlhlWqLFlYwlllYxFQxZztwxQol+TMh4n+XArX+VdxznsiKNRePTLSFALfheNFJ9OHVQVWMqY8h0DqAjcLZ5XaKt/vCr3laiKxenGFB5eu5IaulLmSPAkFlSiLMpqag85RHL4HiFsruLbLFwPbLNTINUTZQGEvAjZLrGhbF38rcRkPgHKLnEXkAwvCMiEcM5fFeyqJ9JCYuVQJQeVcQqtNICQJFf+TWxZTi8Dt08zviZCj6Tnc
jQYKqaQsKrAlR8xxVcjNJVRApRxbdJmgPmABcZoAoAJyI2QGwdSAPEAOAEqdBQEMAYAIbANxU/JsAh6EUvF75sio7YHFeopTwlccEtJOc0PoR10rqrLyxcKkuFqEkQpZmVBZVEqGrrxTYlQWyBKR+LcGd+LKoV4M0lYz8WadWzgJezS7CUEpXOSEo3qJCZe0DBKvmRrkIJB2Zv7LrlWGX2De2TvyaZX5MSESTtRwQzLj+U0rWkZ0rr5VSoelaI8D
5RMsXCZxVoRdqLZJQyKjuIRK/5VZFgPJbKsRdbKpgeAqKJUwLLIsHlvfK0rnhhq4LEqIJahfSKGhZ2VqqtvKpRWDwMFRQQsFcNFGtORLFOXOr2At84veucsY0mKkGzEkLcBdQKF0qsNenEwEPwixLB+GR45ZXRL25U+rFBcNL3lgFEQVUr0wVeMqIVcMKffAbLxhUnV3ZZkZ45TXLsOC0rzhX4s0VbqIExRQrkxZNyIEEREDRSCLjRQ9wg5UGqQ5
bMqWisSqNRZ8qsLPhqtlROEiNfMqCRSSqyNTpCmCtvSZFTL45Fai4BnjpgexQRqqNbShiNbRrSNUxztFRIB8wIDIKAID98wPMBOgNCBoQJIgv4F2AmAM0AysCvBxmTfRCeSSMWYuhgJKjMQs9ArM1FB/kAoOXzusHYEgNQiqC8jrkQQldEzwiWsuZBDLY1VDLC2T3zJFrvd4ZQfdEZdAi7OZJSM1fYcQJVfdU9HkrEXrDApmdGF9FjeRvmU9ArRn
DgRMpvzKZdvzqZcS9VZURM8zrwyj+c0iW1depAVRBqLRVf9pkLOrFWOwE9ZSMKMtRHkahcSL6hbtF8teBqB3ibUitWXDi5f51cnHUENdA9Yr5RfyO1cJLOFFREfldbQHTmd4i6h7LYNa9Emem2qWtUJKWOIpLeIo4U6EjFKtavxKula1qDmHOJTCpVNQtNkpaJOlrKtZNELEuPEMMiv8s7KoNVtfrL1tZlrEGNWEwREDEP4ajETRQVrDtdVqqLPi
wc4sfjrJSBY1tWMKjtVRYWXI8K3JW4jp4qUpnteaKbtQ/A/JS38r4oJEFPBOr3lmzLGODdRlQpllPlmldbchzKCNerK5QnkFFZdlpAAp2Z4dYGqtlUjr9uJtLqBdtLquQbhJZdCrYBYLKiDN8oKyrH8bUp6FbjuCKYBQLK0DNILkSqf13Dnv5Stk7LPtY4FLKURFtyiIEh5fdZ2dVaFZBY8sE4oGJEgCYLhtdMceLmgLfBUaKaPBWMLNW38zllzJ
L5RLrBJb9VAxKDFLNcrqr8guqzhXjNbRcAJwIIrqd9Kd0VdeWlt1SQLd1ZrqyFkrqzdbrq+WiOrthZ8Le5ibqrNQ7qkxNcKZ5VnY3tlRw3dTrrBdn95YFRBqMojbqM/u7rA9RRihhoAKSClMyh5mLrLUrNqyamxDehRuMa9tmCvyIGJ08lrFIaiPk8nGHL6RQXKF0kqCmdZCYg4KzqXhQygmJfNU31YgClQe75ZsiwFPQrvk+PAyrEAabLc9M0Uf
pVTRbYjnFQfARxcFaLUztQMkMOOxUO8v2E7bnX06TMGDh4omzS1TVlLMHnoWFQ/Ra+UWMrEi1w1NPPqIVRwRsVtlZW0JZriiVXqw1SVL//MJQuEhPoLRtk5y9cc5S6FH4asq1xlUgjFz9bcEOglfrJ2eoQYdP74skv2E8JmfqdJZfqQ4O/qlcA/Y/0lyJIMOAKzMP/rX9YAaH9Cer3RcwLIDXg1dJW/qyLKfKv5RvLjtfIlB1KFjPktRZFRe2qSC
luTW1BLMyCKv41HkpDftWXlXte+BovF/4iCv90eMk9qDtS9r/tfgYnUXvqPBG38SgTNLP5i2K+DdIq5Vfwa4Kqxqo+rGg8uldqWDcvEd9XQbFJgwbLafqrVgo0AKAIxUd4UYBKgDAATEUg1lAI2BJAK1BiAJYrlNcy5fOpIkasuu1I/qUQ2sKf5AARPN7rKsyaNcBqPlVxSv4adU6NjGk7Au14wWVST82XZr41UYTTmX5ZQ7EW17cakqLCZWyrCU
BKvNVmqeSSDo/NU2D9xWWUpjipS+dHBKfmTsg+EuWqKZXgjCXtUrCEYF1b/PUrJzBQiT+dpRxDRVrJDZzwsNcCK/BbhqvZDJL6Rby8P5Q2F0DRfKLZZ1KsRRDrVSNHqXdrHrV6vOVWpiRqllVxSVUBodMFVtU1Ngbh7DSZqLAhpg2VeqqAlSbV+jXxrBjcJRj0gG8EMvlcIUTPSwdV21weQrqtdXbqVYpHq3cDKKdRUDgNiSAbTju4amBY3UB1fU
bvIiRwhhpcaiBNcbpVbNLGxd6QQKRRzPeacI6jSSL7jTukLjW4bnjbsKFDfIZ5EJUAW7idAt+DLFcAEdAjoPQAYAHn1WgN99OaWJyVVmGzDQPcM5xo2MBkhTkDCm/kRlTuEyCNjFNccegQDTHqy8r0a8TV/DSypak32GONN9u6j9mQVD8wUcz4lQmrElYEbafrIs/xUQzkZdLkx+SSE6vI39AtLmqn2C689wr6EZru39ipNhhKhQFzotahKvKlYt
hund8D+bmtktfwy8JfeFJjZiq+ArfKmjU6KWjTPFidfzLYVbLLaJW3LFZQfsoydIKhdc7Kagq7LdlHsrHThajUfimE7TR9q5BVzrbvHblxtU4lK4hrpdMOCdg5dDI6EWoquFWIqa5bBomtWrqzBfprSLL50W/jVkHYIE1mTDNqCDQOldQpfFdWIBJzAggqatF7rGzD7qjdb+1WUsN0m+X1LrzEWbbhTxlqeOWb6TQOFGTa8beDQIbOtgqrjIQ9SF
FW8wazaiqjdbSanSsHsmzc8Ndpb0BmADwA3tHmgM0K0BWoPgAisAgBDLIKBxwHmhWgOSE7FRibeAPcQMgvEYZ8jwQZhqc8PwmFFXwu8cnQqSa4dMgNNAnbBA4DWEk2uZL7tTktHtTZrCoXGrjmX4bPxQEaRci5reTUjKIXhGioXkKbQ4o39QvNPyozrPzDCortkirCYMXs/c/2Fo0OCJUqqZcqb0JWn4DKaQjG1Q0rVSaZTvcJQaJJVgEQzYjr7l
ZqRfjVyL/jeJxTTfTrYVZjqyxdsqaJGgajTY/KtavgbJded48WckK8BTQLUDWPFmRfRbBbisLKhd0KQLHAbIFZZFSSEUK6taXLwliR4+henr8WZkIZ9Rvqyxn/Ry6agYK5fQlQJqv4ppBiqSVYKZSjsnKmVRIdrIm+5t4j1ML1h4EhdMc4XTTVl6wkdUhjSJLUNcfRKFW4jgNNXrX1RwRWJaHcYuZAUc4OEq8tZ6MPEuGqshW+5PLd6NbArlM+5c
bTHlQvFnlUCkppLMb/FZyrp9evr0xVvrrRI2Q79fhMuUreqt/nFaMCvMbRVVsBWBexaOBVBrgEjBq02n9E0SL2lP5TxaSxdhFQzQc8TYcwa/tZDF/uBDJVlneU2AhkZ9RVUaMwYvo/IrsBLzfrMbzc51+BaVJBBYqxKOANb0gUNaLEmSVQBTwKJrVUyTWbKq5pR+1PjZe9vjfaQ/2HccWOtebl4nNbuBeNapJdaDeYhUAEAJlgo6KQBMAPoAxgKQ
AmBHUAjoIQAakvIg5CoYaIguok5zoV1B1Ps1rAjwke4uWFDXLBllIfcETYiOZ2AgTSx0PYgr8il0rqgWqcwd/CWTYcy3xUYcElR1cklcmrLDqmr2Semq7DufduSVfcR9GKbryAN0IxcFrZrjBa0rl9EWGZUjtKdWrYtTUqDXBJ8G1UZTCjSZTijf3KJZrr9s4p34ayoIipLQVE/6PClyCP0suEbsp4SiUtkTDwRwkqLanIC+s90kqNT4iI8mhkrh
aOc7YOuoDNaUtpgytMGbAGbX1YPvGBqtrqJwsgMUynFNNoZDLaONSZkhMiQRCxRIiHuIeFpdqu48KvjyLbYLpWyqIcUZv90+bW7Nn8kqwNtWzNzlq7bhhX7aMbAHaMrmygdts0xtyuCFTcpRxfbTYtQ7Q2Zw7ctIntnFFwIg6zppsHaE7VlYk7UgDkukypFRoF0m5XHafUtna3qt1kvuEXkF4qeVJ9CyrmSMDbslCNkwrQEKn8uuVHjrDbTdZRww
IiDam7REqW7UaRn8p4sO7UQIWzcxq2zQtL1rWPCaCVtaG7RGVs4H3ar4FDah7SVJO7aCbN7HUBiAKCw6gPgAoABEQi0CbYYAMoAIiEYB7ONgB9gDA1lNeEpWUtVU2ef15s/v0kv4Nis8TOALhqlRM4gALbVejHaRban8ZuM3FS3nhUJDpGqvDcZyu+aZyi2Y5qS2VZyEZd+a3NczSMlcGsslcKa2fmB9YjQmj0XtLtS6rCY2wUHiBkl75F4ghaYt
UhaaZXkD/7szaktU2qUtUzKN2cnSB/JNFrAf9EDJdCllllQrzQkQ5vKNEtv+qc1tyj492pagZI7YLbn7abl50QoE6ol/EcMmJ5elrFpXwtBJSRvj4LYrit7VoNwSHKZE2Ntgad9MzFgZhc4NNskEOUoqM/UuyC5cQEJIQtlIjYlUoHbdksyqlIFGydtqN/ATZmOhjYjMPHbIDjnbCkru0Qgo/tLanprxUDGUVQQalimD/ixKJfFUgrtEcOlOon1U
Q5Ath7d5ed28DeoN0PQh4FSyrECsDL9FFWFv4uorZhaJBiV2ycUw8qsmI+Ajv5/7TvFC4bBCmAjVU21j48iqAIUV3POAAHWFpkfNIKUnH2EnYCFpKnX/aanUU7GHbqR37aPdo7cLbswvk7qnQTYOnd+4OHQXaOzEf9DGLgZt8vNFuivFklTAbFctaf4xwkfQzMNtEjodE763ucj9jiXY3EnRE8naIIT1gBFHhVocwhVxa3LSCcpZpxZKrk6VAwuo
6qVDxdBoiw6THYOzEGKXRIzMmk46vOUelsw7ZUtlJpSULxpnf51Z9nM6mej87jHYfN29lgZAXf+Fv8iC6lrQ7yhDYIaOniIaGcdwxKxo87fnRC6OFNF5k4jC7y9Xf5dpVAA2AEkBKXEVgKADIgOBHAAmKgowDoGdBKgEMBNqJfa7bsGl0MDkw46gEKCOuJFS7I6coTOEkzze4gTUXwkyllzp+ERDbLGJXQMjDrE8JvYF77sA7IZaA7oZeA7PVk5q
oHV+aQjf+KwjYBLWaZmra2VfcwTETbXmXNwP/GTbSlX14fHk8gaLlFqsjXmiOGQzb2UgUaqrGzbUtSUbD4tk7dnaf5lsao7bnUfRGpHe4ogjqwgYj666EiLgGnbQUVShjsmOrwrlws476HYCQcqPKE+1D4StUiXZyNsHB1Ao1gnSkDEcfPI7raLXt21NpDKtHkFdfgkYfjrX1N8iW5ZunctbyJJRTnRLzznYWUu2KmK1bdFkEag7KkxHNVcpg6Fd
8oYx8siy4fhef4MHd9q6IaU79YuU6UAhphjEuhgdokVSKAj+YE3q6oagissvyI6cJ3YIU76JJQF+WiztKIn4P7b07Auv06Q/n5zpHaTU2Jdu6BraQR4sqN8BwoxRfOtVVWaPCzisnKh1FEwLKptzIyykXLK1rbErRvQEfajPTQYvfRc5phhN8tYFP9v/znusVbcOLe6r4Y/sEjHSFxcKG6MIhfImOm3TCJFB7hXQ+7myIr1L5Ih7mnZG7R7Ui7mN
Si7lpZ9k0Pfe7YPZh62lth6mnRG6DYcxyjABwB6ABwA06FABiAPQBKgBdAKACIwNAJA018IQtf6YGCq+hj9IeUjoScvEo9xbDgK3OtUEaiEEZEhDgIuFwlfmabU21u2oXqJQ1xbS/ZJbdCEoxm3yuch3zMvI4NFXQ5rlXZA6k1fTTB+bZy4HbcyEHQBaoio38K+qg7BSVI0SRh8yvDqFqMip/5TAtAyK1TTbAWdkbbXbkaBuJlYHXTtdMLezbhMH
Bkw8mXa2Zglp2RWgCBHTHbqpkLtb9d1k7+dpE/xFisMXeC6mJnVUn+LD83XXldSwsNjkuq3Uq4VFFlLdep68okZ1osDqAELGJelnPa05T26g2MOFimLESfHjN5A8BkFB1vEo7/KRDcvS16ynXvlUljgwBvaO6hvaSiI2FoprTqDKavYvyhZZzbF3TIlL5JvFLCnW63/IWVvXqqQkUQjgN/DgFjza0ZayAxyzLfY7ZlZmzDniXRxnfyolHpdyntiH
aXHTF6BTO2NUgj7MQYZ4LdSPw7P7eQQ/VVTCdZtBk76JSoyyio6bnYG6nrsG6GIOp7EcGmEtPThYKAWo6g3Zo6jSBD7Ogh/lr1fh7VrbTj2xY/UPedPawIP9kvXSD6NHTSRLDL6lIfSj7WuLtKv4MlhiQEYBs6CWR5FH4QVLF2A+8H4Qp+Rnz+PVny4ad5Ax4k7dwIi3FxPfEp1QkcRJoolkBslRNsWK6o4heRTUAoDLGyN5EMaqf4S6DYNmTTGr
nzT4bXzeZz/DfZpTPRcybcRZ6qwSjLMlTZ7hGmz8LrA56wLYaEWwqu9PmS64CZcu5M0gQkFEgQ6lTRN4M1gNx5ysF77XE66qHe68PfJKFDCr+wUSpZho3XQ7T4jCtx8mc71vZWBNvQagq7X2FqvSQV1ZiYDU7WtEz/I2MiMTrU5KkNkAhOLcKMQh7qPUx0qVN47wTkjcksujrGgm8EooooMpfbQKpIlqd6EorMo4tD5xfZX7m8hwKSONt1gpij0H
AitonvW2txEu8EsqhWNZfblMUZgr6EjDSh9ns97+/YNFIBMP7EwmlEMjOP74XURz3jaNsOzfdT6ccR77SAp76Akp6QYVlUFEqDB5/bGlFfbtK/CPmBdoHUALQPMA/CEgt6AHmgYALObs3MjkDrPhST4QJ6woXqxkorSlPojg45mYaApxC7VASHQrI1XiUsnU6EcnXRFDXCCFnJQo6SMZok/0k+bWTcjbWrhya0bVya7cQkj1XXybfzafd/zRckkH
YgiLgmb7qGfgQbYEx0wWV4dBaavy1WLSESLr4Te2nTaiHXFroKEzbsJRhbcJRbbHCH7l7gvpqsCCHUcGK66IA7s6WQiVkgnSV7QnZzJ4Vtps2IkCFugv6x8WO10Oght7sOHqFZzll7TcnepwAzs6CvUlDtZqQR+EiwkP/L7D4GBDI4ndKkBws+yQYkr1oNjPkNuSt7kvXKNSRvClupa1Fi/QBICIhdEyFNixd3ULbRqiCj5AtbR4A7YFD9fAwfAz
06/A0I6CeIEHQpox1AcHeNSCSv6VrapxJ7dj6uxaG5wg1HbIg997wILAGgg7Ft4g7tLs6JoBGDn4QS0Cog5FIKBd4YfB2OTIgxgMprQtBKEDnjzbS7LrisiLqkBlkujpOQn89BscZpOThlSkUjdVPTFxsHE/bW6i/YBuMjplfS+LVfQq77NaiEIHXDLVXb+LsAz+bw0XgHBTQQHALWz8U7CQGXmTQyiGiFNsHYTKV+UHj7tVNFGHt56t+c76B2iq
aD5PWr2A6zbGld77AEpWNKuREq0daSrZ3t2FANmGbY/ol7f+j8HJQq9FhdFCtZ0t2Ej/tjF+wllbFwsdE38uk7ghO35f/kN4Kspv4OzO+zTA9EtyzuDBPEvYF0Fdlzf2EDN4lP6wsQ1JsoVncQ8Q5pRsVpvw/se8zWjDFyEwC0dF8G4EcnJzzd9Ygk38n+Ij1K/Afg2iShREiHerGMHk3dUtxMdNqGrcCG3qv6knTU5BKxmbaUTBe7IqBbKNXGbz
PMV9wYuSstUrhQselfAddosjF+lk20AoiLh1Q07AOwlCZoMs9ddQ4NzQ8iXYINJCsJ9N2sfgTvitjcqHfebscn9nCGkSpjDu1r+6jxt2EiBF4E/JrjlFylk1VSjR0EasBkplgc8g+WdE+0NxR7LsKk5xmjrdkBhgzvAyGpriWVlWB+EHJnPF7yPu7PnfNJuwv8KiHJqk5fStldormGrzfmH1li6GyaqqHlsZWBX1ZvtTxqZEGw1zahzk1ygQ2hJJ
Q4jhL9AyHasjh0+ZQEcviaTlyTrbEOKNNMdOT0r9gCmlbiLvp1IOyGWuJyHErO5QYuUFEZwydFjzB5BZQ8Lp5QwXlFQxdTdIdUzx7ckGTw108aBohVD6fUyVVXJZJw2uGO1bQV0UOTM6DYuGFQ7qhmOS6CjAPEAhABdB6AM9JNAJKs80EdBxza1AjoAoxTfWibCKSpoTahKES8srErfrGyHqCl0USlNEhuDZZmwZkthZBmHpAsMHkZIWG7bnBrsr
KLqdPXn8C/i+b2TW+bE1ejazPbr6K2e5qq2bjao0U5yeSeg4DXVbB9XIrbKAx+wZTf4Jc4ApM4TJka/CX57gWSwHGzEqIeGdtdPfc8HtTcHg7Q5hg5IlWBqQa856TghkIQu/4knap5/0ildBdNhj2tIxFBgXqGeqqzRmTvuimwg6UEhilFcnK7a+g3rN0jHsggcK7aOIllymnc0wifueTaKHaMi9jk4B/NhHRMHhGJQ1wNjXjrIMI15HVBpGtfI+
KGuwwFGU9QeHGNUeGx7W2L96ReH3eXyj0g7j6PI+mHvI2FGd0n5HIo4RHooydbvLhIALoBdABxJUBMAIE0zrBJroQLgBNAP3gDoI0AWI+uaJOVNMqDnFpeaqByEI6pbc9G5E/Rv6r+Th0kPg1mtc7PYVBge4dUYnQl9zU+Lo1TMHkA3Er3xRRHOTZ+aVgzZzaI5Z6DfdZ6tg7Z62fgk5WI4/dMsq9FZaWKS1KSOFnEOUixaWmdabUJG+2QzbI/JQ
REtRJGz3KF7nXVGSsQ3IH9Qz4SO4n6GVQ26HF6sqws5cvp0wrZbHCFiH8IyCGPbaMUPQ8qwvQwBEahKZHbHTotccv34X1LKH1ouaiNynKQsQ9GHNUuRjV1FCJACmKl48h4J3REzlfEWiHGQxroPI5Bhaw7sdZMQZBE/AKcX7BPN74r4l0iOkDXtvfR6ggfBNIx0ltI1pAAOOgxjonqdaAoLJfWJYYjqsLoFQhQEYsngxbw7gl1ww+HSSEzl3glak
UzrqSBeRdEJohEEEfThBIVsHAZ+LtF4av/xBgdcE/JpH5jZNuGOQ6+H0GL9Fe0FKVektnSZCBbGXw3uHFXsXy63QtF3Av3adY7vqyJiYUSMTn7cY0zkLVpTQx0kcRtSOqHmItIkciI3jV1BISCoqbky7OlC1GdisTQ3rcrYkO77wnCGW4hMtgIolZPozWG+2D9Hwpr9ERiipG/Jvc7GInPEDI9aHiqmWHpObshKwyl0ixlXGrQw1tpQzpgS4zXqm
w3+zK45aHTCjXH243DGmOgjH/GsPTWXjlGCI1KGr9JDHC7pXCYY+qS+4+9GbQzHVScs5EpRj1kHvDLGW4/3GDQ2Trcgt2F+w+vHhUjbQ/yW8bTw8eG+DUR7uzQ4QBeREpW4x9GgIH0G8VgOGN47r5PirdJHOA3dWgGVgoAEWhykhaBBNHmgdLK0AOALtABgCq5HVSR0uLUllLIkTLbEKlcl6uYLwwsJUW5MelWgxfJ4anHVAZfAkMyknFZHU8ko1
avcVfbNGyI/NGNfe+atfVRGdfZFI9fSPyBTajKjfWos2fhAm9g25yx9ESVs4EkbHnl38bYktMU0VcHFTZLT6bQF7pvKhayHQ9HhQlJGLbW8H6wrlHpdtdxZIz2FcAgpGVtH6GM3RGUMooX6yVditg47gktUk5l3XrtF+VNBkyol8H5eILHYbWf5BZCYGbKJ3HGw+2GupgqNmzjHb0gdL0Ew7atE4l1FSqG9KQgsG121Hwkm0iGGcQxSHgMmZhfor
VddwjwsU3e1ismlI6eFrOFcDDFz4IrRhwDRICiw/QkY0hGUMOL9FbiChcoalTN4EG8G9/PO9N9ph7+1pWNSmNBJ74ji0lIQyGtclH77nsgZJwyVIPyBCNVosj4SY6iGWjuTGlQRUm13EStSkYONqQzkwLVsqlqQWhJv/VKTLIuwFT3RkJdY77GMrP1whFTknDI5jYL4puZVw+kC2AiU9xk3qtQY92GJw29LDlbasnkYxwYuRFsWWqjNkNf9w3Y8c
n9YqcnYUJWN7/C2pq0TDF3KEcmjqicncXucJgowDhQo/+In3ditxNuWFVop2q7dOEm9Tvplr9NijsVpHGZytHHSqEkn4Q4N06KSmGOeP+k7AvVzPk+95srp34U0kalltS8DeQwiHOgiqKyOG9KrfjIlY/Iq83gwNGTE5llB/XDh/zjh00rkXsJvUgM4Q9O5y9adzhBSQR/zjRjErHBtgupyml8sEIPyLymeQzEs4ooKmZQmj7V/fFGCPZNZ1/eRy
NrTj6c2NH9knKKmIJCGlJqJKnTgNKnwArKm17erYK0MwJegBJocgPMBugBS4KAEdBlAEIAeADIhj4VD97FbwAInbSkRHd1EnDbYgW1PKlBdFRqXpcatrUTomeY0SGwWTAH0YcVV/ukLptPR9YiEzNGkbXNGUbWgGAXhgGywVgGVo1jaAJTjbI0fczslTySx3Kwm81YfQ+wskFdcVQG1KewL7JAqbrXQUVhIzUqgMtn97o1NCqipwHlbexAvo66G7
Kmfruwl3H2wy41yww3Hc42RNPcN2F7tQJiXoVCDYk9lp4kyfQcqLKG32N5aewnZssaijHJ/KeV+FlUpRo4f5xo7IEJhBHGr4vCn+lkVRRg58FT/HiiCkwaRuY4SH5kPEoBmMdFnkKc1FISaEr0yGmb0zpHoqJGnBU3/RyLq+mCQ5P5b04Sjcg1+nNojGnxbDStlrYi72zeeGenslHOxQrYrwITz/07zG70zulHI7/RQM39EI3DwNN7EdAkgEWhxg
OObKgCohmAKyAzoN4Bm7tIwY3PMAmoRBG/6dnz3Avnbiqj0EAFac9B+EwE/FgV7IknrES48PHOFMVU32IDKNsQaELoitE6+pSS0GTErZg7zlu+QsHjPUsHtfQPyaI1mnNXTmn8A3LkmE4giGvNjL8lbDBX/DPxEZBWmUjZshPlk7ds/gJHGA1dGa1XFr0bAQnm0yWiwieWi8GLSnjE46EqwBCqn44fG1FLfFN4nBlB0znHEirZkONNitUYxunlMW
QxOw5PGcUHD0z8tnZOdi4kHyGIk4Q78Gv/P8HNTDbGT6G/k4hAE6iGLxn/o4jHBM3bokk/qnY/EsnN4vGGsSv0NX2IADLMEkmrGbi76ZgvG74zvGfHoPHhMw/5RM+JtXZjPFXo9XG24+Rx2sxqF+uF1nQTjwaFU9BnXeUlGlVVeHKOeNRb429HDI7XGATZWMOs8Nn8Ik+tmOcwBLbGwALQAbZJEJgArQL0A/WUMB8wK1BSwA9IYinRmP/T4I/hnl
cE1sc18Ou0GxebH8Bg+QR+XYZrXgm1zXIrNkjqkm1+o65nstNRFUvNNGpMyQm1feRHyE5RG004GjgjZmnQjXRHwjdq7Ijbq7mgE35jYDPzSA7DABg06lu/BgiaAxwl4Ra3jAjvi9ZSUwGXfSqanAglrxIy2mYjozLpI2HCcw0OnAsxbJe0/YmkVmtTuwu1DmQ/Fp/lYPY3g+OnZ0zl6/vCXHIQzpFPprrJZQ5/tgMgNDXHVjVjQyntAcOnGKSPYg
nwrSGxUmuNACoema0sem9cBYmSpFYmnbvs5IVrSFXEud5VSlNJjY8dV0aT6HdLUCn1ovtEQTsJLQKquHdGK0HYYnB5IVt9G7Ko0MX+oMCAc6Byc5Ux51Q63Fs4ENUInoLG0rgHa6gqmVn1kzldWCOG+ItArkIKenoMMKHE8+w89c3rMrqvwlZpGLGTatWKOwq/4k6jbGeXaymTuk/Aik8utFHjxk7BRSnoMFSnyzgPBSQ6GHcQ/zG3ZuEmhdBgmU
nF7GGQ1THC492nySEHUSIo6kG6t7aNIkPnN+CPnZdGPmGNacUEXRfGL41fHrw7QTPs0LJvs6PmRTmIU3eI0BWQPQAKAPIhcXBwBWgIKANUc4BjJJUAEQF5CHVU1GrgiAkDBh+RNUkvjKKdwsUSmm1/OUnSYGacZOkzUmQTvEGSSbinTwox084S2EkA4mnSE8mmFo+gGloykq4cxq6Ec1q7PNXjbvNScohSuZFEqd35jg8u46RhlZXkhZmdJlZnhE
/u5yrTkHwWWO1NTVCzoFC5nhRG5ns4qgw3g24Eqs8mHdSXYm2w+znV1qTkoY3PH54hPVIs2DGew5sir4nJHlE6ldfEhVmGC0mGvExpg3pTkwIJHzUUvPeTGcwFnx9NQroHkHUWditEmznN0ow9bySw7lMlQQ+nU/B4KB0sdbKtBPGwYyQUBmOcmXogL7pSne4s4xWHc45bFEDMdEIak1EJDtnAhvsqwmQ7mGG0YTxJUwrMbKpgrmNhwXZ4zgEzE1
5AACx2EHWcVzP8iEXdHTDG/dui6oi4voYi3Knz4yd9Eo7Bnpsxazl828wZ4/EX54gyQEaqQlki8AWUPMxzzgJ0B8wLIpH/QAhv3n5dogEIBz/fZwhAI1Grsxz6/EEakwovlFsli0wCEz6mD0VjFUfnt07DS7m+PkLoFQic902YNgXDW4Ik0d/kTYqAW9PWP0fthAXIc4tH4kTybVg7A79ffQnDfZtHjfYgjw4rtGITEdVvpodHVWCH4u/qtFkMoj
I8C5/cCC8wGG0wV6PfY9G2025GnFpKn4Q38H74gl92rCFmhC46GWXlCy44196BsjuFwrdJRCw1jH+dn0VZY9OH7w/1wB0/XGlC+jYv+MJm+PifRgqSQRmKL2nMI5lGyk8QanIyqUXI+ymAqAyGucz4XWQ5hqH032ozBQbt+AQfG140fRj44GJzkxkna+pK1QDAumCY9dzDCiRwXC0GMSciy0AQ7aMlY1esEs5I0HjeIFOzBQEFiwCKMhJsnKmqMd
dNjzwVs0Nn5bTN53KBlnsnIisWk5eMUnZAdOHSyFpedPiI829UGzHUE94xm6YUvDgW1HxFZkwSR/sk4nknC4mLhhWNH7StMv/L+xoIqxZ0Miwlxi3BrdojbqOwhas5uSArqVWoFFRiDVyCOkCE9aaGKA+n4W4ldxLc5rGzY/GWoMImWkggQoQYF/4AbS075dTMhkohyWylp8nAU0dV7c8YU9A9SYH04xAn02YEX06umQs+un1opumQ6S4XPabjlU
YoWSSjSKnYXaXKgMw+9DS8Y6z/BvU4sZqn+y2xtBywh8mBSOXBdNMg0i1Bn5U08TUgylGEM2FA+y9ympy63AZy/p1jS2OXjU2IhLOGwBKgBaAVEAdAisHmhCAN0A62IZIKAGVgxwKyBWfT/T3/R0XIuJ/s/GhEFsrEdNY2X8NEgpmF0jG9meMytngtpKElAp/Y3rHqsFs9aGG+sRG/4csXXVqsXUA5AXU09AWg0eZ7Vo7sXIXpsGNM5fdmgEqsQL
S1CwLSIWi9qKTVWI5VMXtbBANtnErffcXI8WTnbg7vz67PGBXi5Imnoy8H6OFQXBoypHc852nqYwPm0mcKl/I8yFaHMkdF44ZGANQEDV41XCgAqYUMiVH6Qo5mHHS9JQ6k5VlSrrDGQY8JXwY5MrS4wGHYClMWcpclm+Q4iHRS5RRZQ48lJY5Mlv4EPH8s6PH2HjqW7Y9lmn1eiRm88Enarv+tBY6cjBU2h4YTvkXoY9wWOLMVmnkKVn4aqglK8w
REJHjXnPuJks2c6f00SBqn/6JOWQ0tFW8GrFWqztKRFEw6Hu9k6H90ZRETosFXRAqFWL8VfEWy12Zws+vMO87AFOdo07tSJLmylolY9kFNqvKDbHg2qOsVwnQiUIEzkwS4nGbFknVVw/XZpHeZkLEp1XsVt1WCor1XbuJ5WBU+AEfKyNXE4wnHxq5CXp2m9Li8sf8ZkrNXQS/4Geq0tWReNundqWU5p8tqQuq1tXFq3YXBY1ZbG5ts7w47Cmtc4F
EY4wSQxY0jdrdmCIlcQZFjqwtWIS3e5WYz75AAgjVrtkdXRqydXPq6DxoluIWyoihdBbnVXGYzLmmq7TxcU1sKMIr2FomoyyU4wrmzQwvpSJCk6SmJCEpPTh5v84BIQToZNzRCBX5E9BJHCrqMIQ2pXGk8TWZS6BWya8E0TPukmYwzjHaeHlWKUd6Mkwnia24PQXEw+DWQ4KRJ1S5TRNS6XCX+nPF/cwymGLH0HOUtd12BcnaTzHxX+8/NFQeBUm
gIldUww7Mqviyln+Q6ZXaeH5n6skYXGY6Onp07VViVmzY9a4YXa7YbWzacbWJ0yfRFywvnxs8uXamauX4M9ukVdgYXHQpbXQk/px+c3En0VopYt87dJsAAMB2xAdBmgJ0AGo/oAaBFpIfgGVg4AKjkWE+0W7pZFwsHB9Nb4gGE2aKAyOCObNBumWqoGcmyY1EqXI/IE8rfcEqpqwam/2OWq5XbZq5g74b1i1AXNi8DtlM/Dm1o3sWNo7hW1iFfc2
MoRWnCRyJAmjhkCEyUq1KXjUUQzBiBE7WmFStZmG01GFWK+Ck6c1wH5s31mH40TjtC6UwzooaUX1PjWyY/FodvH2HmS7JXN41D1jc8BED1RgFaBZ9mEwlim/xDuozBr5yc4rgkvfHHi08rxdoa5msboZ7mu0/NFlZshmw00epKY17mv6zVqjqp/XlKxGx/6yA2FBf+kaQ6MniYlD11Q8CmHc6/5efE7Hdw7IFN4ufqqOvENb/pqYPk3+J7k0Pjcv
ZuWxUyCd2KOrGTY1PEuhkLtfazOn/axphzS2kb/2DrFLuhq51E6pH19kxY/c9QXAc4Hnt3Womy45onBjvRYVq0NE+AimlOurEy8S4pXGQ3jFy6+ZlDU7lt90WmH8S6FHCS3qmvK/I235q09IMw7WVy5j7rLmuW3awsJJG38mvC2zE1G9NXK6+XdA66sFJEGdAVLPcJWgDlgLoK1Ai0KQBJABCAaCDIhFxZfbSpMWV0gV8odMW4qc4MAlewnFEeFp
j9U+J5n96zXl8OgiIh7npk9zcyFQ8hJnpg6DmwC+DmyE7DKCGf3zoHdsWmaVhW/zThWL7p3WFNYk5haO2FZMdb7oLULSUfWDBzM2Lp6K48Xyc0xWHQn1h7M6ESijc9Gq9QrX7/NxLOLPYWmc8oXpplxX6U14FsOBSXvC5+R0wp4XGQ239cw5cdzaGoE7k9UEq8VOn/pSbWEk+Lw688hH84H16hTCXH8ot5EApVMVewng1wawDgsrOV7CzUyWZKzE
32KKenck7oxcaheY967c28ajKhz9WRMk5nbdL9NQ2Nm3OmtvL9FpkJhhZjukYyLHlnBuADH+/CTx0XXOVsY6HkWrZVoIWyPHAY0/s8Yyetqaoe4HUvbXHa6RzMi4qquzbkW/aMi3+M6i3H4+i24W5AUEW1Y3346sEoAEIB8wPmALQLtQysBqjWoFABLFUWhmgPZxSAM4A5Vg0GAJErESrJmkOFhppeBf10efdgRRK0Gmb6G86kTO8V13EfN6+eTM
ZbhGV+VGkali6RGMm2sWsm4Pycm2q7YCzgH1g3VDHORPyeSZdn+SaBbMc3WYOgvg1gtdwnKK6srP9k6bx64JGbXfWmRE1TrZ69NCKC8zyfg3uk+0HBrGDGBFtI6IFO3RBioyRbF4fhrVFWCuFv9Mk8G0cfFjmo1q5cbeQEtN/1YApuH4oUf6L1qfXQG2xxU2+qKaelNFCS5mzQMV1EesiMUza3LjlBUo7pwz7maDZfFboh1gE4jab5KAH4PapP4P
DTkGVaDDpTCjubEAr+DhZqVbR1oqIfhVc6BrTR1Dg5ZLxjXThRBCAlGDXzGOCPd5Dwgk2NQ/ULCvpV1PbmqlkTGUtZnKlWctqcA/BUQEBvN7kcztB7N0VxtGG9lYpImimvZBKFkSsCnqqlppHXolCcUkx0UnGSXL4Cy4gAiNl54jqwIqBzM9wnMhPA5+2C6TdXp3AiXPokqCa28us621Gl4EI8bH9ji0AOyB3fI5P4i2xm26KRGI6kztqzi9BobR
ER1RhZKLIzBeYgO3QFPAxsiACRKWs5blMPBGHg89JSL+FaTMKmhwlo8406RipSgH2+ctUY5BJhBbWRUI+m2p3YFwvRQ2jOzKkEMHTKhwMph25wjEzdRMOF5On+2uzNjNsUD+3vpgwkDOZ07SWgbFsCJyGBbeWNb684hA20lMVoTRxw1IZN5eWeMw8Xzx5Qizkzolv58OXSZ7EIo1BBN2nbDVbht4mfWf1qIHvuLEzxda2pXO/NF3OwNZPO7QVvO5
AdfOzFG580kGly+kXFUxNm0CFZcetq7WSDg/B/OyB3h47r8dBeqzQu44UpahrU3w4JqnTOcAgI0kB8wGdBBQBwA2ADIgYAMQA4AMfbCAKWAjAOm4Gg1nsdZlBFY/GmSPVZFpvUrxES+Qrybnkt1kXm2sCrn9n37ZPn1KSQUwpYQncwYjaEK+T9CwXJmTDiq7FM7k3DW2sH7OUjmkC1Ear7oKUTi2qxTqoPEOXc2YQMjwnmZj+cngnRW2GU03GKzT
LOgo7J1TYA8OA/PX204Aq1/BR3WvY27XuxvAnAZTRbHZ+2tbWHKv/PztKwJ8tx6oxFSzswEw/qdHjIyPTZxoLJiwzbAZ89qym24jW7lr+DpE031p3NjFHUjO5t/KfQs9sx3v+j2kJqpqHnhsiZ76MkcKtpg5SkVps95f5ELnpg5dfpgFHRER2JHrT2FEgbcbqMDzSRshyNlcWU2+mlczxiQE+KEFxQtGzQsmEf9tqdTQnuXwEM2zlmV5WL25xq2g
WuEk7oIFG2zwjG2g22RY9nof5U/HRSRC7RcaO/B2dLYbRLDAk7G1vImaJNJ3rTsW3T5jqkpxJwQvfMFW1e0/HiNnix8O8yZvUvDF5hbQVl5vPif/NH5ommO24tKDxWYf6mLRdG0lIunlQwcGMEjHbWUqHl0ZQm4bKOreRtSFYkibH+kl22NNTnBbEKvjbEpHexEt26LQd26vUIVjcEkxobEwm2fBd9SD2TOwYnKtAxN4s7R3TgLzmoINF5KLom2U
vWPHaeKT3ywuT2PObrIM+3SN8okoHqLBtjRxj7NqIqOFyPCG3U/GG2IyhG3USCRM3Dass2FTqo2ezT3opm97keP0VFkxOWce5wECe+pSW4pBhEWzVo4Mrc6WaDPkEcBbbwAu0Fhuzf3ZlexVzhn2xT+/3rW8otNZdGv3w5nvHfFdG3A269EjaabRdezz2DewVFS9u93DiJR2t3YbRM2VjZzIrujf9eCH4oYPFg9qQQQO+aJvoVSoIRn7bjhVGpUB
8BtyAjxlRs6fHWzbi3Yu5QOTPEvnZs2i74BwMNcBzYtusQQOQ7ih2MBxtmiuxABr0p0B6AKwdSAPZwBgKyBbG0VgR8AuAOACyAdozfmFYhMsiasmFdwtgRQ2qjt7Lr6LyA8BtCrnoNHFWzMqhg8cOuhlDsNko1DGGxjAmpq3O+TJmwHUZ7luyZ6qE0pmaE5hW6E9hWGEwcXNM3YTzKpa2iK9a35yiYUHvQTK0MIYthSyP2nfUImniyInMk963W0y
92Pi4VRyO9APPu3GHC27b2sOyJ29vL9332+QQu2IPTj+2/3KOh/2/5P8BKqljE1cRjtpopv33Dtnkd+2A2bUUmlH21Jt93glUFHfhMl9Fp2f+E30L8vZ2GOT23juWq5YZikEOKAo37wpoP4YdD3/2CAokO2gPiBwF30GJD3tB4YVdB+Lg1OwUP/246lJh+K0oe+PEYe+F0F21n2x++gxbO32xK1u0OBlNgEo5RVabhTGa8uqlFv0UF3aqVuG7jo2
Zr+5J3pMNixX/Kwlkghwk2Q2J3DB/fQLul6SZey8PYwSxR9B3cOJOwuk6OGNn4u4Z4aB5tab408Ptcm2pXhw4CZQ7cPxO0YOCG6HyEADwAi0PIgzoKdLDrJIBt7efZWgFAAuwPZwvPIYa9wjv4B1BmE7/GK2Q4FlDo2k4koImhGuyEVUk4vOV6WhGDSSkXVFJphBv+kDhUGak29DtJmDPfMG3YvJnsm85rloxhWVM/AW1M0U38bc0BRGkWn5WHqc
IQuFppTZWmXXmv54wa63LM+63royImdqmwH5aRQ6tTVZGBe7tVnkH2oSAn1y023ul0MPb326VAOQO7EOUecAkS+xqky+1DN98gsPNOz95SsiVVwYH5zTS6Ucjhzi0ThyNVhKH23m2+j2EMrWNupov7MEpLVLxn277SxIFfY0WNqwsR2Oe5AV9aUr3FRKnUj/ldwWR0qNAhIqM4eooklYnh2iHLsTsrZ+WSx4vd+xTAguR1/AeR7rdbeayq6x6IcG
x3D19jhG0Wx/OVWvO2OwR+j6Ug3o3ku8qraB1tbUwlg02R2WOGSL2OWci2FeR231dpaY4EAOMAoAEtQzoPMB3Ws0AuwOMBrALziUOgRW2fa+Xk62Z88gmEolmXllJo2W4oA5VE2irFpGOs/DA+80c2aDk6ic2odCaRW5E4saFDcadUPngKPwkTXWzB4Z6lu/88Vu9YO1u1KOW6wU2Ng44OO6/Wor7pC19ux4IHUhriD+rq45eik5Lg1d2q1Td39J
q762/vCDSC2P9yCyOz7PpbtO227451TFMMOwkPWXatyhMd1Mkbh/5gnb9MoQXZUUooZM2spaLsAiQ48aibEFSyWdXx6O3u9tTRNvj4FVusxEA3YGSKMaJPg++JPhdCTxfOmxjGagBPh2wxjFJx+OD1qpOOY/+PbAji21rWOPLwzkXJx4rYFJygilJ5+PjWnpO/xz6NCu9Y35DGWgzoKyAisJoADoL0Bh9H4QEAKWB+NEMAhAPWBlwA0Ha+pVELVr
rdzxuYaswKzQdrepywlKlEfgliHw0+3Ikp4BPolYKOwc7XX1fbq3GSRKOYCzBO4C63WHB/sXEJ7C9mgLW0lR7+IZEoqNT6NPofOXX1MHNjsfPT2yCJzXYAUsXYX8WEPac82qOKy4tCw7ih+p0ZOEu75gps4S3zJzlB+p+lBBp4eWKgCohiAJUlWoMfbXJ3Kd8AHmhnABQB4gBqjJAHuPDDR6FKpbAFXAqWEe/P0kIqv+IkWm4En61aiqK1hEjRUy
oKzv/4/s4TzNbWDFTTnBWDmfN2AEeYPwJzEjxR8sH8p83XCp3BOTWzq6mI1fdg2W4Pe65qA2Ns96P89b6VC8TLEWsjErRnXy8J7mi60/qPeVJol9M0aOIWeROp2aA85cYc9WuTN4gQjB3oMDxk99QAKmjt2t/OqWVgGQmIYylJsa5VCZxon6WJZkVTehzMtoNBTyXEviZOZFYNcS2gXqgkqwE5UVQ2lgOzAAgvoPwgxbDaINVk4nwFstKblsOJXR
5Z5AU2LXDd6sdCMWxxLyAAmlEBmNOUylmWVLXHcQhvmgOOzP2E9vVRwKeTa8Sw4EJ826JxfMamaLAljYBhN6klAkp8sYqvUJASHBu0vLUSRjt5KrqOVlC8i0QLJjE9UjxsbUgMCJklVEsATbEmh+oRwNovEqMWpGExHncAy/IP6IuAFKUHBiTunQ6cjoHg5aogFx9ONFYByaQnUTnA3BPJs2+3EDpKkdVp8gN4A41XroljtEIwsKMrQhnMTMgkNI
TKpsch7aNkAqiKZc/ClKDBTy6oiJsfznONhnDpy/OmjyypJvsNtMLKQ4P+F6whzoruOxV/sKmaoFfyWfXgvOWmDtEP/EAb3I79FqU1zp0NkMK+2+HP8IrDzqLDNEs4rpkqqhBCN4A/YUnOctLXHiHZatf5pdpfqO8tTx+sniZRI/dZcnIKRtuiuUyyk7do/QiD37T82YRil1L9CH9bWOwt/xIyG/dtixBJSEEQTdN8DYlH3tEv6GGlHAv6zBGFEF
3qr+sQJ3nKsHs5KhYk9ZggkT6z+t3/PwDxfULJrjc8NkDA/ZN+OkZTEr4ijKNHOQ6trl/GqgxLCnON7JBH9f7kZR5QnirIJC3rIBE1g6y9E1FGrEnsfP2wxFW2t3Hr3MY+ntFVoki0RKHfpE/CbkFEvNwHUsmOcrpjYcHLtFzvEcwHovg1eajrOZYZQvOZMy4aF7shMbi/5LjlzpgwrZjKVKQk6O7Zn6O4n34Ml4nsweXqbnOH4C+zikgUt/1TnD
zrTgLQkfIknn7/HSbTRqLcWawbgzBhcsBobtUFJtTwi8tqFv0ek7T8eFl5RsBlHorBWpge1ELndPkH8kv2idexVi8rmbSCNO5ZMNgF5oibEFbTmdPuNf5l24q23BNXO6BTcFAlmYEyaj7skLFYl+VAFF6ATgwZoijNuF5LaM3bLV5AoEI4/Ac9V3E/ttFwhKyF/IXOTNIK7s1CE84E/tZgpXFPUlMdaF2ig8us0wvlrV7SyvrSeRi4uNzoOcWlD/
4vAiEvD5qOTB4qAVWYsflVpHBl6FvUOuor6TVFxIcnShDUmedQYGl55E7yuzdOeFIvnF7Iul8rKR+2F0FD3PqE9ZzzxFpmFoRUd2loU+27log2YpphdEAJLqEhhpH4RsoPNNnUmIoRJDU5Y1X7rh32w/wrKlrqocu+Wu/aTmra2M3QmJgwb+x/ueJLzUpKQ8F/dY+Pv+wr4bOklBh/5KVK1n0AZWMZEhEo9WPBbmsVUEczi/ikshxOJbvXkaqlzp
Vcm4Ee0eDVzMhGF+wnpQuqsEFXlzMgcNAm877awFH1eC3qwqtFqbHyNhJRasK/XvOGeQbciIjeqheUQkdYZVdP9navyznfp7LvhNSmNIuPYcJD1FB2Y1UlCZIu4ls7l9OG95DhEaDNrV4tMn5sDfzWlottFWiqk4JuRtog6oZiIlFyKH9FOJwlolCvFnPPnOrXPAzZmkcBhzwsIgsW0/FnFqRxhB3+WmEaOpPlfvBRio1CJt54vEtCcYpsYuf748
KphgLsetjKInYlE4nkaG21FBu7tBKXCXWWcqxRigeRasEjKQQ4zj92ZV0mFUlvKvxlIIIHx1NNx5fEYxeuqFcOVptRAqqZvUknOGzFRicNOH4H4ddsu2HO7y13MthvbH5vKJYV/UkkVprQW6KMb2lVZT4Tq3TyZovFBIycvhNSpNSMqguIcwkrDzHZpxLb4s6FRAsJP1KBqnw5iEEskuEWVUCRNi7EAyL+aEH/cPYgCrmPd3AjepY/GVNt4PDFUA
mhv1CFKMAchn9uivG7jEteOzwt2ZZ28Ru7RlBE90l74qSgKZIPvHm32LtVYtMc54EgEvcpsG1D6olZvBVBEsV9DVjnE2FEslFE0Cxm7X9FJPIzOE9nlUf4FOSQ5dGCtNgPU2FF9HREVogViLLcYaBsomEkwqBpLwrMz4lMSsFPPTHlcqHj5uKbU68hw6cjoc8gQmB5rAlaE/DhuvswhBJNsaHbE4mkPjnDDoKRWDBFBgvqnKJRvEjNRvos0f5ovA
1I8rkwKczoBy3nemEJTaGCFPFh00h0MXoTpvwMFTnAkTFVFjnCW4FRhWcJ0T7MQDHQtEshEoUTjLPjaW0A6NiKJ8atUnCt8WUknNBJE0puYo1JNdL19nZ2NKKgmsJrFK5+4LfIKMG5I/r2CUTLDhZP10xG4qIpmSGL2ogALa+sn5Eoj+MbqKpHObjzH3KG0sMCqEEJlmWUv1wNaARimkQEjWOCOOTN/2EBsiGhzyBTOTMhkkLIsEmVrGIuH5HQoG
OFAsGXTUJ1uK5/Rsst4xEkM+IkffGrjADMgNXJfUmsmvHOVbduV1EsiUUgsm2zKG/FPZaW8fZstv5QsiYEfsHt/e+HM/GpykMfl74FezZR6wrTXBNnqw5Kp5l/IgLN3Ah4Iv2y5RjjPQkUSpWtrDd84wwmOMO8kfFCIt6ldvck4cd8Oun8i/4lN/tE2+o9j90TCt4x+XatYsJL0rpxE7sw8EXUSCrjuuGELvYlkcqOG0jQqlFquvbPaKGZ8k/HDM
nrnzUvuJmyWjibkH/CKIruOb2fZo6kF9GlcYeLmEyq5eiG0UWPZIZNKZ8lqkMqD9uPan9vevbrurtoHBLxTnmqCnaEuddVmztdSrt3lml8N6fkKs3JUrzSwEgBdY0HqH+kzNuPF6zFTuntgOFadzu2ruN3c7Vl7b+lpC6lmS5LnN8yE+h4SrlISvbS+V2ZHzEzrAAhj98AhnGc901lqaPnvB/cLooy3luEqigjV5z9yVdxjswfQpBi+d3OZKo2mr
uMiTd/T8chJZMpOuYai32CdU+wkWOnAbtEG0ZccFBTluIwrfF695jzOK9xAlevvl9UyYVLSZlCcAlnYlAvQCk6uSKWtf8tHUoXv+usXu9vff4oNT4ESrBXC6y9CdRaMfvPNkQIz97dwtxZfviltfucFP9kpIoRN4F6ptz9x9NkWq/ve0DgptaqYkT1vP7pw7/uawhLyOEoAfOeQ07o2tgMfzlBrLxxv4hkvsrMfEuFrdr8XieXSZFYkmE1FIE0HA
u/uDYiQFqgiqFdkfJ3jEqlz4naYFVKCy5maraxbojJEVZy/FyKRPoP8yeYuErcQZ5Uo0CEiWK/crLoXCacAa0t84snTGDB4uIksxXkOelatF/xFgl8fH8pIAhFuicne3WrXaML5HfFBumCJ3zGGFaFo900d6xZ/xCYEvQtCYxRuDuLYgFFySi0tIUJ1yw20nETqi18DUHkGCFxGMD1XSZgIlqd4k846v6qahKIvmEULTDXKOEuFUAoSGdkIOWfzk
TUBA/lFGq5RxPS1WAKzgvobYvFMwwm75/D9Ee3ZrEfBosc0BuOKyDUA/ZtyutFmOpzs8LOGE8Gpkf38okefDzfyhg+EpJGnYWbp1VU7p5fJZtygEdZtUe95AfPXvP5EGjyY7stAZQE3pTafSsUsVjhkebYOUecj/yg+uiHUpSdikda6S1vV4eKy7fxuTUQOlme8f89kJRwl97QsUmpjYs9u9wBCqoLhRKLQsCNYf5HfinG1g4eHZA+vc5zC0ItpC
hIPvSmZyvCGINM5LU/DN4jm1OpIUA9QAAqZnee+ApkBjGkBws+FQ1/ui4tEn5TAlVz8IsPPO53friar3OvKKJKh4rRFVSgmJsrlqkAAaidRLoNMS3CVImY3plD6ntPnQkBkB+HOVi8291aQlL64cAQYX/EkEhVx/48LBEr+9u2pIWyuFAxOZ27KuxtSHv7MGJqpsWghEL3vDyGLHSQVwhi0xdd5Cso1j75Ul0H6hZ/WZMMFNFp9VooE4oI89Mh0E
m89WFBx5L2KwAvuSiVz7zug6cBRYVQ+uoqF8oidFOFJPOqrSesvfKMqZ9AaeWXG4FmQiTDvZQRw/lImklWIGFi9XUV+sud4vZdgj3KA+EEqrlJuzNGtoPCguzBWguhvMJ5Jw22t8l6xtLzlGo2aN/kwz52S9I7zLXwmkukTLGeQzwmfTgOGfet+1FNytTqlGkJ5MF54l21P6HfIBTzmV1v51qmUn4WAyv7c/ITlUr5BKIg4Eihxm63EbssxV6FNc
pKVJWRumvrumYEERQqg9V7jE3l/dF+2J57raAhk4ycGaU0qMfWqxjrj1ebMJ9AFFl110uPApxFemyzRGuWEK6k89FRlhEF2fD0v8FzCsxJRGIsIgyjTl7MccgiVYgRU4kjRRlN+OGqegcBqe5vTAg7RsrkYTz3PmTE+HxV2hJ/wreOYEKMG79pPpCfsvKuKHs90Crj25nRto85Q6E8nIRNlHZyYxe7zciiaLCONBquuxjgEb7QLWn7YTXOFFIG/K
A1EZ1w+Vm6uSRSsmJmgxQOFdKE1LeNwwlkrjEf+9g+Qt/ACFL1JMfk+g0Pky3hqq9v4dAGVbpb1Cbu4cGbuTC5xWQBVQeF/VZF4plUegcDUeAhEnVjbctqV98FXeZmPq5T8UxOuyuGleqQRMsrPP2t6+w5eeVah2oRE3nQjVIAtN6t16agZd1wM5S/sryz/PlavVWfSkZMom+i3OJ5gol6EimWdZgqNaEobOhwyqgHEp+Ea0lV7gB9O06FjieBoX
ieOhzgQdaqpefZoc96SBr2CEm5tj6N+pt4kiC0Vwmbx+7KGAwgXKCL9wD3Zacs/1lGnZSO/aezzC6BoiApovPryiqSWvG5ypXoT91liaip3f2pkvqUyRiclyR5qYe3DW1NBFkDNbOmTlGeQ6gAYaL6NuM3WqvFTE4vR1lCvK9SKhg4D6lWZmWMN/GsU8guaEs875Uhc4RJjxsfEIlUMls7FSHN9mOE9kD3GnT+DUDnqe39oqOSkrsUsewsk5SCGJ
4jCsXYsEoe4vu50b5EpqlgOeWdG14SrVvUVSnSukDAJGpD3V+9eEhsE8H7POVnEKrvW96bgfAoDe38h9fgnpTHxT8Q4fKw9Q6CvJVEBSdU/SwjfT6BKf+V8HMRleZEyN5Bgf8cOOna6Te4uyOPyb2TeqBxQOdGxTfqb+CPKb4zf6b3Tfab1TfWb0zf2b8zfOTiZO4MxOOoR1GQknNSHsb0jeGSCjfPcoTeMb3mxwAL+B1iN552QC1BuACtBoAJ8B
MgBUAiACUQ1gAwBCAAgAKACog3Vl5J5gIbejb9iAIANgARAPTALQI2B9AOyA0mx9OTb2bfQaUnBLbxkA9b0hWSoSPJTb+benb1bfHrZr77b17fsgM7frb/DLPb47fA71bebbxmnQEaHeLb1bfn6VmmY797eMgMpJ7B4nfw7xkAjoJwBrpc6BmQFDJNbw7fY7xnes76yBC+oiZPwGneoAEHeY6JgBd7erfziENQEAPMAcdBXeg7/LeK0BERQaWwAK
AJ8BcAJEUW71beNoF99O793eQgGIg6YFCBLqP3eMgB3eJ75HolFGTATb+B0oQCyBUbAvgGJiwlUYkuiHyMDg+QNgBl73OayA+Lrl0wsXgb5rejAGwADAIrecwAQARgqCBdOdVVuFFPeQvOjngMDiESQCbfEKcQAS70YAy75rfP7+yAEAKs04vH/fSACQBdoGwA3sBtAao8EBktJE4SAONgPCLQJ8AGIgUQEMBWgGg+0H7yB7OIoVmoF5IE6Pg+ZW
I/eC70nBI77CBlJFAAMwCvxzktg+fQKA/AkFfeJQFkBoH/uBrihKAxgKnzuAKw/SgBwAHsJw/XstqAhAFAB1wFcVXso/e7AOHxsADkBWQDw+4AOA/IHzw++meyp1iJI/CAIwAzoBffBSmgAPCJnyMcmbeIQAYA5709AyCw9TtqBQ+1Hxo/3kItBwAG4QG9PoRgAAtAQAAtAgAA==
```
%%

View File

@ -0,0 +1,80 @@
---
title: Understanding Induction
abstract: I am fucking stupid and I can't understand this
author:
---
## Understanding Induction
There are a few assumptions to be made when performing induction proofs (in general):
- There is *some* non-decreasing property about the category we're observing (i.e. difference between elements in a sequence, length of a list, height of a tree)
- The structure needs to be *well-defined*[^1]
And then we move on to the mechanism for proofs itself:
1. Induction Base Case: The base case(s) must be **sufficient** to cover all minimal or simplest cases of the structure.
For instance, when proving properties of lists, we often start by showing the property holds for the empty list.
2. Inductive Hypothesis: We assume that the property we're trying to prove holds for an arbitrary case. It must explicitly account for all necessary assumptions about the intermediate state of the structure.
3. Inductive Step: To establish the general inductive step, we should demonstrate that if the property holds for a given category (the induction hypothesis), it also holds for the next element (based on the non-decreasing property mentioned earlier).
We should be able to guarantee termination and avoid ambiguity in the process.
## Induction in Haskell
Given Haskell's [purity](Introduction%20to%20Functional%20Programming.md), we can perform induction proofs on most of its structure.
The non-decreasing property is defined by the data structure (`data` keyword) and/or the logic we have implemented (i.e. natural numbers - n > n-1 > 0, lists -> length, tree -> height).
We then proceed with the process mentioned above, although slightly altered as to fit the data structure category:
- **BC**: We must first establish a base case, which is a minimal instance of the structure that satisfies the property being proven. For example, this could be an empty list, a single element, or a tree with only one node. The base case must be simple enough to verify directly.
- **IH**: Assume that the property holds for some arbitrary but fixed instance of the structure. This is often referred to as the **induction step assumption**, where you posit[^2] that the property is valid for a smaller or simpler instance of the structure.
- **IS**: Using the inductive hypothesis, prove that the property holds for a larger or more complex instance of the structure.
For example, if the property holds for a list of length $n$, you need to show it holds for a list of length $n+1$. Similarly, for a tree of height $h$, show it holds for a tree of height $h+1$. This step bridges the smaller case to the larger one.
For example, when proving that reversing twice returns the original list, we can use mathematical induction:
1. **Base Case**: We need to show the property holds for the empty list (`[]`). Here, it's clear that `reverseList [] = []` and `reverseList (reverseList [])` is also `[]` since `reverseList` appends elements to the left `(++)`, and an empty list cannot be appended to anything.
2. **Inductive Step**: Suppose the property holds for a given non-empty list `x:xs` (induction hypothesis). To prove it holds for the longer list xs (`x:xs`), we apply `reverseList` and use the defined function properties as follows:
```haskell
-- Induction Hypothesis (property holds for xs)
prop_reverseTwice xs =>
-- Show that property also holds for x:xs (inductive step)
prop_reverseTwice (reverseList x:xs) =
-- Break down the list using reverseList and pattern matching
prop_reverseTwice ((reverseList xs) ++ [x]) =
-- Use the definition of concatenation, reverse, and the induction hypothesis
prop_reverseTwice (xs ++ reverseList [] ++ [x]) =
-- Use the fact that concatenating an empty list with any other list returns the original list.
prop_reverseTwice (xs ++ [x]) =
-- The property holds for xs by our induction hypothesis
True
```
By showing the base case and inductive step, we have successfully proven that `reverseList` reverses lists twice, returning the original list.
### TL;DR
1. Base case - empty list or tree
2. Inductive hypothesis - assume it works for an arbitrary list `xs` or tree (i.e.)
```haskell
data Tree a = Empty -- A tree can be empty
| Node a (Tree a) (Tree a) -- Or a node with a value and two
deriving (Show, Eq)
-- when a Tree a is Empty
```
3. Inductive Step - show that it works for a larger list `x:xs` or a non-empty tree
This process involves knowing *some* implementation details of higher-order functions (or at least a vague idea as to how they work).
[^1]: Clear rules as to how it's constructed
[^2]: to propose as an explanation **:** [suggest](https://www.merriam-webster.com/dictionary/suggest)

View File

@ -0,0 +1,21 @@
### Null hyposthesis
### Confidence interval
Interval which is expected to contain the parameter
$$
CI = \bar{x} \pm z \frac{s}{\sqrt{n}}
$$
Where $z\frac{s}{\sqrt{n}}$ is the variation in our estimate.
### T-Test
Used to determine if there is a significant difference between the means of two groups.
We have to assume:
- Data follows a normal distribution
- each observation is independent
$$
t = \frac{\text{mean} - \text{theoretical value}}{s\sqrt{n}}
$$

50
Untitled.md Normal file
View File

@ -0,0 +1,50 @@
```haskell
add :: (Int -> Int) -> Int
add x y = x+y
instance Eq Bool where
True == True = True
False == False = True
_ == _ = False
instance (Eq a, Eq b) => Eq (a, b) where
(x1, y1) == (x2, y2) = x1 == x2 && y1 == y2
-- A value that exists
myValue :: Maybe Int
myValue = Just 42
-- A value that doesn't exist
noValue :: Maybe Int
noValue = Nothing
```
```python
class Number:
# Some implementation
class Float(Number):
# Some implentation
class Integer(Number):
# Some implementation
def add(numA:Number, numB:Number) -> Number:
```
```python
class MyClass:
def __eq__(self):
# MyClass :: Eq
def __str__(self)
# MyClass :: Show
def __
```