Migrated
This commit is contained in:
29
Calculus 2/Non-homogeneous ODE.md
Normal file
29
Calculus 2/Non-homogeneous ODE.md
Normal file
@ -0,0 +1,29 @@
|
||||
---
|
||||
type: math
|
||||
---
|
||||
## Finding particular solutions
|
||||
|
||||
### Definitions
|
||||
|
||||
- RHS $f(x) = P_{deg}(x) \cdot e^{rx}, p\in \mathbb{R}[x]$
|
||||
- P is a polynomial
|
||||
- Of **first kind**
|
||||
- i.e. $e^{-3x}$; $2x^2+x -3$; $xe^x$
|
||||
- RHS $f(x) = e^{rx} \cdot [P_{deg}(x)\\cdot \cos qx + Q_{deg_{2}}(x)\cdot \sin qx]$
|
||||
- P, Q are polynomials
|
||||
- Of **second kind**
|
||||
- i.e. $2\cos x-\sin x$;$x^2e^{-x}\cos 2x$
|
||||
- A "constant" is a polynomial of degree 0
|
||||
|
||||
##### Hyperbolic sin ($\sinh$)
|
||||
Just as a fun fact, it doesn't fit neither of the kinds.
|
||||
$$
|
||||
\sinh x = \frac{e^x - e^{-x}}{2}
|
||||
$$
|
||||
### Method of undetermined coeffs
|
||||
- RHS of 1st kind
|
||||
- There exists a particular solution of the form
|
||||
$$
|
||||
y_{*}(x) = x^s \cdot R_{m}(x)\cdot e^{rx}
|
||||
$$
|
||||
- Where $s \rightarrow^{\text{{def}}} \text{multiplicity } r\in \mathbb{R}$ among the roots of characteristic polynomials for the LHS of the equation
|
Reference in New Issue
Block a user