vault backup: 2025-01-15 20:31:27
This commit is contained in:
21
Statistics and Probability/Mock exam run 1.md
Normal file
21
Statistics and Probability/Mock exam run 1.md
Normal file
@ -0,0 +1,21 @@
|
||||
|
||||
### Null hyposthesis
|
||||
|
||||
### Confidence interval
|
||||
Interval which is expected to contain the parameter
|
||||
$$
|
||||
CI = \bar{x} \pm z \frac{s}{\sqrt{n}}
|
||||
$$
|
||||
Where $z\frac{s}{\sqrt{n}}$ is the variation in our estimate.
|
||||
|
||||
|
||||
### T-Test
|
||||
Used to determine if there is a significant difference between the means of two groups.
|
||||
|
||||
We have to assume:
|
||||
- Data follows a normal distribution
|
||||
- each observation is independent
|
||||
|
||||
$$
|
||||
t = \frac{\text{mean} - \text{theoretical value}}{s\sqrt{n}}
|
||||
$$
|
42
Statistics and Probability/Support Lecture.md
Normal file
42
Statistics and Probability/Support Lecture.md
Normal file
@ -0,0 +1,42 @@
|
||||
## Probability
|
||||
- $P = \frac{\text{Favorable Cases}}{\text{Total Cases}}$
|
||||
|
||||
### Conditional Probability
|
||||
|
||||
$$
|
||||
P (A|B) = \frac{P (A \cap B)}{P(B)}
|
||||
$$
|
||||
|
||||
|
||||
### Independence
|
||||
$$P (A \cup B) = P(A)P(B)$$
|
||||
|
||||
### Law of Total Probabilities
|
||||
|
||||
Used when selecting an element at random.
|
||||
|
||||
$$
|
||||
P(A) = \Sigma_n P(A \cup B_n)
|
||||
$$
|
||||
|
||||

|
||||
### Bayes' theorem
|
||||
|
||||
$$
|
||||
P(H | \epsilon) = \frac{P(\epsilon | H) P(H)}{P(\epsilon)}
|
||||
$$
|
||||
|
||||
|
||||
### Probability Mass Function (PMF)
|
||||
- Helps more finding the mean than the variance
|
||||
|
||||
|
||||
### Expectation ($\mathbb{E}$)
|
||||
idfk
|
||||
**Expected value == mean**
|
||||
### Variance
|
||||
$$
|
||||
var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2
|
||||
$$
|
||||
|
||||
##
|
Reference in New Issue
Block a user