## Probability - $P = \frac{\text{Favorable Cases}}{\text{Total Cases}}$ ### Conditional Probability $$ P (A|B) = \frac{P (A \cap B)}{P(B)} $$ ### Independence $$P (A \cup B) = P(A)P(B)$$ ### Law of Total Probabilities Used when selecting an element at random. $$ P(A) = \Sigma_n P(A \cup B_n) $$ ![](Pasted%20image%2020250113151159.png) ### Bayes' theorem $$ P(H | \epsilon) = \frac{P(\epsilon | H) P(H)}{P(\epsilon)} $$ ### Probability Mass Function (PMF) - Helps more finding the mean than the variance ### Expectation ($\mathbb{E}$) idfk **Expected value == mean** ### Variance $$ var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 $$ ##