This commit is contained in:
2024-12-24 23:04:34 +02:00
parent 615290521b
commit a8a362c277
8 changed files with 377 additions and 0 deletions

Binary file not shown.

Binary file not shown.

77
iq_mini_4489/src/board.py Normal file
View File

@ -0,0 +1,77 @@
import numpy as np
from typing import Tuple, List
import pieces
import colorama
def generate_orientations(piece: np.ndarray) -> List[np.ndarray]:
"""
Generate all unique orientations of a piece.
"""
orientations = []
# Rotations
current = piece.copy()
for _ in range(4):
current = np.rot90(current)
if not any(np.array_equal(current, o) for o in orientations):
orientations.append(current.copy())
# Flip + rotations
flipped = np.flip(piece, axis=0)
for _ in range(4):
flipped = np.rot90(flipped)
if not any(np.array_equal(flipped, o) for o in orientations):
orientations.append(flipped.copy())
return orientations
class Board:
def __init__(self, size: Tuple[int, int] = (5, 5)):
self.rows, self.cols = size
self.grid = np.zeros((self.rows, self.cols), dtype=int)
def in_bounds(self, r: int, c: int) -> bool:
return 0 <= r < self.rows and 0 <= c < self.cols
def placeable(self, shape: np.ndarray, top_left: Tuple[int,int]) -> bool:
"""
check if valid
"""
(r_offset, c_offset) = top_left
shape_rows, shape_cols = shape.shape
for i in range(shape_rows):
for j in range(shape_cols):
if shape[i, j] == 1:
r = r_offset + i
c = c_offset + j
if not self.in_bounds(r, c) or self.grid[r, c] != 0:
return False
return True
def place(self, shape: np.ndarray, top_left: Tuple[int,int], piece_id: int) -> None:
"""
place the piece
"""
(r_offset, c_offset) = top_left
shape_rows, shape_cols = shape.shape
for i in range(shape_rows):
for j in range(shape_cols):
if shape[i, j] == 1:
self.grid[r_offset + i, c_offset + j] = piece_id
def remove(self, shape: np.ndarray, top_left: Tuple[int,int]) -> None:
(r_offset, c_offset) = top_left
shape_rows, shape_cols = shape.shape
for i in range(shape_rows):
for j in range(shape_cols):
if shape[i, j] == 1:
self.grid[r_offset + i, c_offset + j] = 0
def is_full(self) -> bool:
return np.all(self.grid != 0)
def __str__(self):
return str(self.grid)

96
iq_mini_4489/src/main.py Normal file
View File

@ -0,0 +1,96 @@
from board import Board, generate_orientations
from typing import Tuple, List
import pieces
import numpy as np
import colorama
def backtrack(board: Board, pieces_list: List[str], piece_index: int,
orientations: dict, solutions: List[np.ndarray]) -> None:
"""
Backtracking to place each piece in the board in all possible ways.
"""
# if full, check if solution
if piece_index == len(pieces_list):
if board.is_full():
solutions.append(board.grid.copy())
return
piece_name = pieces_list[piece_index]
all_orientations = orientations[piece_name]
for orientation in all_orientations:
rows, cols = orientation.shape
for row in range(board.rows - rows + 1):
for col in range(board.cols - cols + 1):
if board.placeable(orientation, (row, col)):
board.place(orientation, (row, col), piece_index + 1)
backtrack(board, pieces_list, piece_index + 1, orientations, solutions)
board.remove(orientation, (row, col))
def colorful_solution(solution: np.ndarray) -> str:
"""
Return a colorful representation of the solution.
"""
rows, cols = solution.shape
result = ""
piece_id_to_color = {
-1: colorama.Back.BLACK,
1: colorama.Back.GREEN,
2: colorama.Back.BLUE,
3: colorama.Back.YELLOW,
4: colorama.Back.MAGENTA,
5: colorama.Back.CYAN,
6: colorama.Back.RED,
}
for r in range(rows):
for c in range(cols):
piece_id = solution[r, c]
if piece_id == 0:
result += colorama.Back.LIGHTWHITE_EX + " "
else:
result += piece_id_to_color[piece_id] + " "
result += colorama.Back.RESET
result += "\n"
return result
def solve(xPin: Tuple[int, int], yPin: Tuple[int, int], zPin: Tuple[int, int]):
"""
solve the puzzle, avoiding the pins at the specified positions.
Args:
xPin (Tuple[int, int]): row, col of the 'x' pin
yPin (Tuple[int, int]): row, col of the 'y' pin
zPin (Tuple[int, int]): row, col of the 'z' pin
"""
board = Board((5, 5))
pinned_positions = [xPin, yPin, zPin]
for (pr, pc) in pinned_positions:
board.grid[pr, pc] = -1
orientations_map = {}
for piece_name, piece_matrix in pieces.all_pieces.items():
orientations_map[piece_name] = generate_orientations(piece_matrix)
piece_names = list(pieces.all_pieces.keys())
solutions = []
backtrack(board, piece_names, 0, orientations_map, solutions)
if solutions:
print(f"Found {len(solutions)} solution(s).")
for idx, sol in enumerate(solutions, start=1):
print(f"Solution #{idx}:")
print(colorful_solution(sol))
print("------------------")
print(f"Total: {len(solutions)} solution{"s" if len(solutions) else ""}.")
return
print("No solution found.")
if __name__ == "__main__":
solve((0, 2), (2, 0), (3, 3))

View File

@ -0,0 +1,99 @@
import numpy as np
three_in_a_row = np.array([
[1, 1, 1]
])
l_shape = np.array([
[1, 0],
[1, 0],
[1, 1]
])
t_shape = np.array([
[1, 1, 1],
[0, 1, 0],
])
square = np.array([
[1, 1],
[1, 1]
])
smaller_l_shape = np.array([
[1, 0],
[1, 1]
])
tetris_z = np.array([
[1, 1, 0],
[0, 1, 1]
])
all_pieces = {
"Consecutive 3s": three_in_a_row,
"L": l_shape,
"T": t_shape,
"Square": square,
"Smaller L": smaller_l_shape,
"Z": tetris_z
}
def sanity_check():
"""Check all possible ways to position the pieces(including 3d rotation)"""
for piece_name, piece in all_pieces.items():
all_placements = []
# Check original rotations
for _ in range(4):
piece = np.rot90(piece)
if piece.tolist() not in all_placements:
all_placements.append(piece.tolist())
# Check flipped rotations
flipped_piece = np.flip(piece, axis=0)
for _ in range(4):
flipped_piece = np.rot90(flipped_piece)
if flipped_piece.tolist() not in all_placements:
all_placements.append(flipped_piece.tolist())
print(f"Piece: {piece_name}")
print(f"Distinct Placements (including flips and rotations): {len(all_placements)}")
print("--------------------")
def count_combinations_on_matrix(matrix_size):
"""Count all possible combinations of pieces on a matrix of given size."""
matrix = np.zeros(matrix_size, dtype=int)
total_combinations = 0
for piece_name, piece in all_pieces.items():
piece_rows, piece_cols = piece.shape
placements = []
# Generate all distinct placements of the piece
for _ in range(4):
piece = np.rot90(piece)
if piece.tolist() not in placements:
placements.append(piece.tolist())
flipped_piece = np.flip(piece, axis=0)
for _ in range(4):
flipped_piece = np.rot90(flipped_piece)
if flipped_piece.tolist() not in placements:
placements.append(flipped_piece.tolist())
# Count valid placements on the matrix
for placement in placements:
rows, cols = len(placement), len(placement[0])
for i in range(matrix_size[0] - rows + 1):
for j in range(matrix_size[1] - cols + 1):
sub_matrix = matrix[i:i + rows, j:j + cols]
if not sub_matrix.any(): # Check if the space is empty
total_combinations += 1
print(f"Total combinations on {matrix_size[0]}x{matrix_size[1]} matrix: {total_combinations}")
if __name__ == "__main__":
sanity_check()
count_combinations_on_matrix((5, 5))