42 lines
653 B
Markdown
42 lines
653 B
Markdown
## Probability
|
|
- $P = \frac{\text{Favorable Cases}}{\text{Total Cases}}$
|
|
|
|
### Conditional Probability
|
|
|
|
$$
|
|
P (A|B) = \frac{P (A \cap B)}{P(B)}
|
|
$$
|
|
|
|
|
|
### Independence
|
|
$$P (A \cup B) = P(A)P(B)$$
|
|
|
|
### Law of Total Probabilities
|
|
|
|
Used when selecting an element at random.
|
|
|
|
$$
|
|
P(A) = \Sigma_n P(A \cup B_n)
|
|
$$
|
|
|
|

|
|
### Bayes' theorem
|
|
|
|
$$
|
|
P(H | \epsilon) = \frac{P(\epsilon | H) P(H)}{P(\epsilon)}
|
|
$$
|
|
|
|
|
|
### Probability Mass Function (PMF)
|
|
- Helps more finding the mean than the variance
|
|
|
|
|
|
### Expectation ($\mathbb{E}$)
|
|
idfk
|
|
**Expected value == mean**
|
|
### Variance
|
|
$$
|
|
var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2
|
|
$$
|
|
|
|
## |